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Introduction

The Problem: A shopper using RFID and Barack Obama
have a security problem. Obama's problem was solved when
his BlackBerry was replaced with a more secure device.
Now, even if his communications are intercepted, they
cannot be decoded because of encryption technology. The
President's need for security is apparent. A customer using
RFID has a similar problem. The tag she carries will send
information that can be used to track her movements.
Secure communication technology can protect her as it
protects the President. But the National Security Agency can
spend more money to protect the President's BlackBerry
than we can spend on a shopper. Providing world class
wireless security on a consumer’s budget is the subject of
this research.

RFID technology is sufficiently mature that its economic
potential is clear. RFID is still a fertile research field, offering
many opportunities for study in computer engineering. We
have several research thrusts in RFID security:

1. A new cryptography-based protocol for privacy in
RFID systems

2. Efficient architectures for elliptic curve
cryptography processors for RFID

3. A methodology for designing power management

and other information about the object. Typically, there are
thousands or millions of tags for every reader, so the cost
and complexity of the tags characterize the system. Tags
range in complexity from EAS at the low end to smart cards
at the high end. EAS devices are used to discourage theft.
An EAS tag is a tuned circuit that can be detected by a
reader at the exit of a shop. After authorization, the tag is
programmed to detune the circuit, encoding one-bit of
information. A smart card is a credit card or loyalty card with
embedded electronics which may include an eight-bit
microprocessor. A card can identify its owner, carry volatile
information such as an account balance and provide
encryption to protect the owner from unauthorized readers.

Our Research: Building an RFID tag to transmit
identification is relatively straightforward; however, this has
implications for privacy. RFID provides the benefit of an
economical remote sensing capability for data processing
systems. This benefit can be abused. As semiconductor
fabrication costs decrease, more computing power can be
put on tags without increasing costs. The higher end
functionality of smart cards can be incorporated into RFID
tags to prevent them from providing information to
unauthorized readers. To get this security capability, tags
require a secure protocol. We found that a public-key
cryptographic system was necessary. In the RFID
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Conclusions

The Solution: RFID tags provide a unique capability
because they can be read without a line of sight. But this
benefit is a double-edged sword. Steps must be taken to
prevent unauthorized reading. By use the computing
capabilities of tags, we have made progress on three fronts.

Our secure protocol defines an efficient method for storing,
communicating and processing encrypted messages. For
RFID product identification tags, individuals maintain their
privacy. Using this protocol, tags do not identify themselves
to rogue readers. The protocol is efficient implementing read
and change-owner operations in a minimum number of
encryption operations, message words and tag registers.

Our cryptographic processor designs reduce the cost of
manufacturing by reducing circuit area. The designs also
improve tag range by reducing processing time and power.
These improvements were found by applying many
techniques including an analysis of data flows for the elliptic
curve cryptography formulas and by modifying the formulas.
Our R5 processor design uses fewer registers than any in
the literature. Our R6 design minimizes the number of Galois
field multiply operations. Among processors that minimize
multiplies, the R6 uses the fewest registers.

Finally, our power management techniques ensure that
energy from the antenna is used flexibly and efficiently by the

Our research and the work of many others in the area of
computer engineering is improving wireless security so that
users can live more conveniently and work more efficiently
whether they are buying gas or leading the free world.
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Both have a security problem

Solution #1: Secure Protocol

We are working on Solutions

Solution #2: Cryptographic Processor

Solution #3: Power Management
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identification and maintain privacy.

known so the operation is secure.
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inversion in efficient architectures.

Fig. 6: R5 Processor Data Flow

for NMOS and 0.60 V for PMOS.

Fig. 7: Current vs. Voltage for a Chain of Four Inverters at Maximum Frequency



