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Fine-Grained Supply Gating
For Low Dynamic And Leakage Power
Using Hypergraph Partitioning

And Shannon Decomposition

Abstract

by

LAWRENCE LEINWEBER

Energy requirements and power density issues have a significant impact on
microelectronic systems in the form of battery life and bulky cooling fans. These
problems continue to grow as leakage power becomes the predominant form of power
consumption below 45 nm. A design tool was developed to synthesize combinatorial
logic with reduced power consumption using hypergraph partitioning and Shannon
decomposition, which reduces leakage power by disabling unused logic in small clusters
of gates. The program demonstrates that these techniques can be fully automated. The
techniques are described and the results of tests with ISCAS-85 benchmarks are
presented. The power savings median value was an improvement of 18% with predictive

32 nm technology.



Introduction

Technological advances in semiconductor fabrication have lead to smaller transistors and
higher clock speeds; however, power requirements have not scaled down at the same rate.
As a result, power density has increased. Energy requirements and power density issues
have a significant impact on microelectonic systems as energy enters, remains in, and
exits these systems. In many systems, energy enters from a battery whose life limits the
effectiveness and even the viability of mobile applications. Energy remains in systems in
the form of temperature, which constrains the performance and reliability of electronic
devices. And energy exits many systems via a heat sink or fan, which increases the cost

and bulk of the system.

Power is lost in the normal operation of digital systems. Because they are designed to
process information rather than perform physical work, power is only consumed because
the system is realized from sub-optimum devices. But the MOSFET integrated circuits
used in the modern systems come close to optimal. As the technology is pushed further,

though, minor imperfections have become serious limitations.

The most efficient logic systems are static CMQOS, and the limited use of pass transistors.
Power is lost in two ways, dynamically, when the circuit is switched, and statically, when
the circuit is idle. Dynamic power is consumed in short circuit power, when static
CMOS has a path to ground during switching, and capacitive power, lost reversing the
charges on capacitive loads in an FET circuit. Static power is the leakage current from

the power supply through the transistors to ground. Leakage current includes sub-



threshold leakage, due to the lowering of threshold voltages, and the comparatively minor

effects of band-to-band tunneling and gate leakage.

Until recently, dynamic power had been the only significant form of power consumption;
however, success in controlling dynamic power has exposed the secondary problem of
static power, especially sub-threshold leakage, and some of the success with dynamic
power has been at the expense of static power. Dynamic power scales as the square of
voltage, so supply voltages have been scaled aggressively. Lower supply voltages
require lower switching threshold voltages, which leads to greater sub-threshold leakage.
Higher operating temperatures also aggravate sub-threshold leakage. In the 45 nm
regime, leakage power has caught up with dynamic power as the greatest form of power

consumption.

One of the most fruitful ideas among the many techniques for saving power is reducing
the power of unused sections of large systems. Power is saved by raising the threshold
voltage or switching off the power supply. Transistors are the obvious choice for
switching. On the small scale, transistors within gates have lower leakage when in series.
Stacked transistors reverse bias the gate-source voltage. On the large scale, an entire

ALU or the like can be put into sleep mode by wide supply gating transistors.

Shannon Expansion

This technique on the scale of a few to one hundred gates is based on the Shannon

expansion, in which a Boolean expression is factored into two terms, one in which a

-6-



control variable is factored as false and another in which the control variable is factored

as true:

f(x)=f(0)-x+ f(1)-x

The logic for (0) is stacked with a supply-gating transistor controlled by X and the logic

for f(1) is stacked with a transistor controlled by X. The outputs of the two are combined

in a multiplexer controlled by X and X , as illustrated below:

f(x)

Figure 1: General Shannonized Function

This Shannon decomposition technique requires that the circuit be factored into two

subexpressions, or cofactors. This is always possible but if not done carefully can lead to

some redundant logic. To prevent this, consider the following equation:

g(x,h(x)) = g(0,h(x)) - x + g(L h(x)) - x



Here g is factored with respect to x. The functional value h(x) is clearly an input to both
cofactors of g. The shared logic that produces any signal that would appear in both
cofactors should be implemented once independent of the cofactors and the resultant
signal used as an input to each cofactor. It is important to identify such signals when
developing the cofactors in order to avoid implementing the same logic twice, which

wastes area and consumes some leakage power in the disabled, redundant copy.

The full implementation is illustrated below:

g(0,y)

W VAR

a(ly)

9(x,h(x))

Figure 2: General Shannonized Function with Shared Logic

Factoring out common logic subexpressions at the input of a system to which Shannon
decomposition is applied is a refinement that broadens the range of circuits to which the
technique can be applied effectively. It is also useful to factor out post-multiplexer logic,
but that was not done in the implementation of the program to synthesize Shannonized

circuitry.



It is not possible to factor out post-multiplexer logic or even to separate cofactors by
simply expressing the output signals in terms of the input signals in sum-of-products
form unless the number of inputs is small because each additional input can double the
number of minterms required to express the output. The worst case is 2"* minterms for n

inputs, which occurs in an n input exclusive-OR gate.

The stacking transistors are NMOS because of the higher mobility of electrons. The
multiplexer is typically a pass transistor design; however, if the last stage of logic before
the multiplexer in each cofactor is supply gated with PMOS as well as NMOS, no
multiplexer is needed, but each last stage gate must have its own PMOS and NMOS
supply gating transistors. It is not possible to share these transistors between gates if
more than one output is Shannonized, which is discussed in the PMOS supply gating

section below.

Literature Survey

This work is primarily an automatic tool for synthesizing combinatorial logic to save
power using the Shannonization technique. The task of synthesizing logic generally is
left to the SIS [1] logic synthesis tool. SIS is fairly obsolete but the goal here is to
demonstrate how to improve a circuit with Shannonization, not to produce the best
synthesized result in absolute terms. A practical use of this work would be to marry the

design of the Shannonization program with state-of-the-art synthesis tools.



This work is based primarily on the work of my advisor [2], who described the design of
an automatic tool to synthesize logic with Shannonization so the resulting circuit saved
power. Most of those ideas are adopted here, including the use of recursion. One idea
that was not adopted was collapsing the logic into sum-of-products form. The number of

minterms can increase exponentially as the number of inputs increases linearly.

It is not practical to use Shannonization on an arbitrarily large circuit because any
particular input soon has little influence on the gates deep in its logic cone. The cofactors
are better when they are more independent, so the distance between inputs and
multiplexers is better kept to a reasonable size. Operating on an arbitrarily large circuit
requires the circuit be divided into partitions each of which is Shannonized
independently. Most of the ideas for hypergraph partitioning are taken from a paper by
Karypis [3]. A partitioning algorithm specifically oriented toward logic circuits is

described in a paper by Saab [4].

Tschanz, et al., describe some of the problems and compare some of the solutions for

reducing leakage power [5].

D. Sylvester and H. Kaul provide a survey of the power related problems in nanometer

logic [6].

The ISCAS-85 benchmarks are described at the RTL level by M. Hansen, H. Yalcin, and

J. P. Hayes [7].
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The 32 nm predictive technology model is described by Cao, et al [8]. The Nano-CMOS

program and those PTM models were developed by Cao, et al [9].

Shannonization

The Shannonization process begins with a circuit encoded in BLIF (Berkeley Logic
Interchange Format). This format represents a logic circuit as a series of truth tables. For
example, a circuit that performs a test for equality of a pair of two bit numbers performs
the operation:

equal = a[1:0] == b[1:0]
This can be represented in terms of simple gates as follows:

e0 = a0 XNOR bO
el = al XNOR bl
equal = e0 AND el

This is coded in BLIF as follows:

-.model equal
.inputs a0 al b0 bl
.outputs equal
.names a0 bO eO
00 1

11 1

.names al bl el
00 1

11 1

.names e0 el equal
11 1

The _names line represents the header of a truth table with the output last. The lines

that follow give the body of the table with the output "1" last. Input combinations not
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given in the table are understood to produce a "0" output. A "don't care™ input value

would be indicated with a "-" symbol.

The equality function can be represented in a logic diagram as follows:

a0 —

b0 —— e0
S
bl —7

Figure 3: Logic Diagram of Equality Function

After the circuit in read into the internal data structure, it is given an initial technology
mapping using Berkeley's SIS, the sequential circuit synthesis program. The initial
mapping is important in judging the performance of the Shannonization technique so that
the original and modified versions of the circuit have each been technology mapped by
SIS. If the initial mapping is not performed then the statistics will compare the quality of
the synthesis of the given circuit with the synthesis performed by SIS on the Shannonized
circuit. The initial mapping is required if the given circuit is not technology mapped and
includes functions that are more complex. However, the initial mapping by SIS is not
possible for large circuits of 1000 gates or more; therefore, the initial mapping feature is

optional.
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In the equality function example, initial mapping is necessary because exclusive-NOR is
not an elementary gate in the gate library used. Technology mapping gives the following

result:

a0

129
>0
[ o 70
2
bo >0
131
114

. 10 equal
al >O ]
*— 68
7
>O 104
132

106

bl

Figure 4: Logic Diagram of Technology Mapped Equality Function

Next, the circuit is partitioned and then Shannonization is performed on each partition
independently. In this example, the circuit contains only eleven gates so partitioning is

not necessary and Shannonization is performed once on the entire circuit.

Shannonization begins with the selection of a control variable, an input signal used to
divide the circuit into two parts, one in which the control variable is false and another in
which it is true. The goal of the analysis is to select a variable to minimize power, which

is likely to occur for the circuit with the fewest number of gates.
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The analysis is performed for each input signal by creating two copying of the circuit and
setting the signal to false in one copy and true in the other. This makes some gates trivial
and these are removed before the total number of gates is counted. The best candidate
signals, which give circuits with the least number of gates, are then analyzed again, but
this time each copy is fully technology mapped. The signal that gives the least number of
gates with this more thorough test is made the control variable for the circuit partition.

The number of candidate signals is three by default, but may be changed.

In this example, every input produces a circuit with the same number of gates. In each

case, when one of the inputs is set to a constant, one half of the circuit in the technology
mapped logic diagram above reduces to a triviality. That every input is an equally good
choice is as expected since all the inputs to this function are symmetric. In this example,

a0 is the control variable, chosen arbitrarily.

Once the control variable is selected, the basic cofactored, or two-part, circuit is
constructed. The two cofactor subcircuits are created, one in which the control variable is
false and the other in which it is true. The inputs to the original circuit are connected to
both cofactors, except for the control variable, which is not an input to the cofactors. The
outputs from the two cofactors are combined in a series of multiplexers, one for each
output, to produce the outputs of the original circuit. The control variable is the selector
signal for all the multiplexers. An inverter provides the inverse of the control variable

signal, also connected to all multiplexers. When the cofactor circuits are created, they are
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technology mapped but not fully simplified in order to aid in identifying shared logic in

the next step.

The circuit is divided into three subcircuits. CF2 is the subcircuit in which the control
variable is false; CF1 has the control variable true. MUX is the subcircuit that contains
the multiplexers and the inverter for the control variable. The following logic diagram

shows the cofactored circuit for the equality function example:

b0— a0 ]
CF2 Ll>07 MUX/a0
al CF2/66
CF2/88
bl MUX/a0
0—0
CF2/92
CF2/equal
equal
CF1l/equal
CF1/66
CF1/89 a0
CF1/93
CF1 MUX

Figure 5: Logic Diagram of Cofactored Equality Function

Next, the cofactors are combined into a single shared subcircuit and resynthesized, to find
and eliminate redundant logic. The goal of this step is to identify the logic that appears in

both cofactors. This problem occurs because some logic lay outside the logic cone of the
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control variable. When the cofactors were created, they each had been simplified
somewhat because the control variable was set to a constant. However, some of the
remaining logic, especially near other inputs, was unaffected by the control variable.

That logic was duplicated between the cofactors. The goal of cofactoring is to save
power by disabling unused logic, but logic that appears in both cofactors is never
disabled and only wasted area. Therefore, this step of Shannonization removes redundant

logic, but leaves the cofactored logic combined in a single subcircuit.

The following logic diagram shows the equality function example with redundant logic
eliminated:

b0 — a0—|

LDQ— MUX/a0

MUX/a0

CF2/equal
al 7 L

bl 0
>O< equal
>

2 l
8 L]

CF1/equal

SL a0 MUX

Figure 6: Logic Diagram of Equality Function with Shared Logic

At this point, the circuit is organized so that logic used by both cofactors can be

separated, as pre-multiplexer shared logic, and logic used by each cofactor can be supply
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gated. This Shannonization technique does not attempt to identify post-multiplexer

shared logic.

In the next step, the logic is separated into two cofactors and the shared logic. The logic
cone of each gate includes the CF1 and/or CF2 inputs of some multiplexers. If the cone
includes both cofactors, then the gate is shared logic. The analysis is carried out by
tracing the output signals back from the multiplexers, flagging each new gate as required
in CF1 or CF2. Gates flagged as both are placed in the SL, shared logic subcircuit.
Gates flagged as required by one or the other are placed in the CF1 subcircuit or the CF2

subcircuit, to be supply gated.

Finally, each of the three subcircuits is given a final technology mapping. Then NMOS
supply gating transistors are added. The gating transistor for CF1 is switched by the
control variable. The gating transistor for CF2 is switched by the inverse of the control

variable.

The following logic diagram shows the final version of the Shannonized equality function
example. The shared logic is slightly different than in the diagram above due to
technology mapping, but the CF1 and CF2 logic is the same as above. In the diagram
below, supply gating is represented as a transistor connected to a cofactor block,
indicating that each gate in the cofactor is connected to the virtual ground provided by the

drain of the gating transistor.

-17 -



a0—|

SL/0
CF2 MUX/a0
al 5 SL/68
bl MUX/a04| 9
8 —q
CF2/equal
—] equal
7 1
SL/90
SL 4
CF1/equal
CF1
a0
w—ﬁ 10 MUX

Figure 7: Logic Diagram of Shannonized Equality Function

Shannonization is not carried out if the resulting circuit requires excessive area or
estimated power. Power is estimated as area but halved for gates in the cofactors which
have a 50% probability of being enabled, depending on the input vector. If the resulting
subcircuit requires a 50% increase in area or power over the original, Shannonization is
aborted and the original subcircuit is kept, unmodified. The limits in area and power
increase can be changed, independently, by the user of the program. The Shannonization
technique is applied recursively to a depth of two, but this is an option that can be

changed by the user. A depth of one defeats the recursion feature.

The output of the program is a SPICE file with the original circuit, after the initial

technology mapping, and the modified, Shannonized circuit, each arranged as a
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subcircuit, which can be simulated and compared. Each gate is listed as a subcircuit

reference to a gate library.

For the equality function example, the following SPICE subcircuits are generated by the
program when given the BLIF input above. These subcircuits are represented graphically

in logic diagrams above.

.SUBCKT equalorg _a0 _al bO bl equal _VDD _VSS
XUO _[129] _a0 _VvDD _VSS _VDD _VSS invl

XUl [131] _bO _VvDD _VSS _VDD _VSS invl

XU2 _[70] _[129] _[131] _vDD _VSS _VDD _VSS and2
XU3 [114] [129] bO VDD _VSS VDD _VSS bor2
XU4 [106] _[70] _[114] _vDD _VSS VDD _VSS bor2
XU5 [130] _al VDD VSS VDD _VSS invl

XU6 [132] bl VDD VSS VDD _VSS invl

XU7 _[68] _[130] _[132] _vDD _VSS VDD _VSS and2
XU8 [110] _[130] _bi1 _vDD _VSS VDD _VSS bor2
XU9 [104] _[68] _[110] _vDD _VSS VDD _VSS bor2
XU10 _equal _[106] _[104] _vDD _VSS _VDD _VSS and2
-ENDS

-SUBCKT equalmod _a0 _al bO _bl _equal _VDD _VSS

XUO _O0/MUX/a0 _a0 _VDD _VSS _VDD _VSS invl

XUl _equal _0O/MUX/a0 _a0 _0/CF2/equal _0/CFl1/equal _VDD _VSS _VDD
_VSS mux21

XU2 _0/SL/[0] _bO _0O/SL/[2] _vDD _0/CF2/VSS _VDD _VSS bor2

XU3 _0/CF2/equal _0/SL/[0] _VvDD _0/CF2/VSS _VDD _VSS invl

xXu4 _0/SL/[1] _bO _0O/SL/[2] _vDD _0O/CF1/VSS _VDD _VSS nand2

XU5 _0/CF1/equal _0O/SL/[1] _vDD _0O/CF1/VSS _VDD _VSS invl

XU6 _0/SL/[68] _al _bl VDD _VSS _VDD _VSS nor2

XU7 _0/SL/[90] _al bl VDD _VSS _VDD _VSS nand2

Xu8 _0/SL/[2] _0/SL/[68] _0/SL/[90] _vDD _VSS VDD _VSS bor2

XU9 _0/CF2/VSS _0/MUX/a0 _VDD _VSS _VDD _VSS nmosgate N=2

XU10 _0O/CF1/VSS _a0 _VDD _VSS VDD _VSS nmosgate N=2

-ENDS

Synthesis Flows

The following flowcharts show the major steps in the synthesis process. The Power3
flowchart is the top-level organization, which consists of technology mapping the given
logic description, partitioning, and performing recursive Shannonization on each
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partition. The Reshannonize flowchart indicates that the cofactors and shared logic of

each Shannonized subcircuit is reprocessed until the recursion depth limit is reached.

Reshannonize

Recursion

( Powerd ) Depth
Reached?
4
Technology Map
L/ Shannonize
Partition
\ No v
Reshannonize
Partition
Yes
4
Size Supply Gating Reshannonize
Transistors Cofactor 2
Y
Reshannonize

Cofactor 1

Y

Reshannonize
Shared Logic

Y

( Return )

In the last two flowcharts below, the details of Shannonization are carried out. The
control variable is selected by counting gates for each input signal set to a constant and
the trivialized gates removed. The top three candidates are evaluated again after a full
technology mapping. Candidates are tested to avoid creating a dependency loop. Then
the multiplexers and supply gating transistors are built. The circuit is divided into
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cofactors. Then the shared logic is found and separated and the final technology mapping

is performed. If the result exceeds power or area limits, the Shannonization is aborted.

( Shannonize )

A 4
Select Control Select
Variable Control
Variable
Y >
Build Muxes,  J
Supply _Gating Count Gates
Transistors w/Input Signal
Constant
4
Divide into
Cofactors
Yes

A J
Find Shared Logic

No
\ |
Separate Shared Sort
Logic >
Y Y
Technology Map Re-evaluate
Top 3 Signal,
Tech Mapped

More Top 3
Inputs?

Area Limit
Exceeded?

Failure
Return

Success

Circuit Representation

In the most general form, circuits consist of components connected by wires. This is the

form used for analog electrical circuit analysis by the program SPICE from Berkeley. At
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the logic synthesis level, a circuit is a system of gates connected by signals. Each signal
is the output of one gate. An input signal to the circuit is presumed driven by an external
gate. Each other signal is driven by an internal gate. This is the form used for logic

analysis by the program SIS, also from Berkeley. Communication with the SIS program

is done in BLIF, Berkeley Logic Interchange Format.

For sophisticated techniques, a system of gates and signals is not adequate to represent a
circuit. A two-tiered system is needed to support partitioning. Moreover, a full
hierarchical system provides the flexibility for the recursive application of the Shannon
Expansion technique. Therefore, a circuit includes a tree of subcircuits and a set of
signals. Each signal includes a tree of subsignals. The tree of a signal is a subtree of the

circuit tree.

The data structure that represents a subcircuit includes links to its siblings, children, and
parent as well as the circuit to which it belongs. Similarly, the data structure that
represents a subsignal includes links to its siblings, children, and parent as well as the
signal to which it belongs. There is also a link, called a join, from each subsignal to a
subcircuit that represent the connection of a subsignal to a subcircuit, so that each
subcircuit can enumerate its list of connecting subsignals. A connection can be one of

several types: input, output, internal or power supply.

Typically, the order of subsignals within a subcircuit is not important. In this

representation, subsignals are organized into signal trees. For communication with SIS,
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signals are identified by name. With SPICE, component nodes are identified by position,
but most gates represent commutative logical operations, in which order has no effect.
However, for some gates, especially multiplexers, order matters. For this purpose, the

data structure maintains the order of subsignals within a subcircuit.

Despite the general hierarchical organization, the lowest two levels of the circuit
hierarchy always represent gates as sums of products and minterms. A sum of products
subcircuit is understood to represent a gate by having one output subsignal, a set of input
subsignals, and a set of minterm subcircuits. The sum of products is the logical OR of its
minterms. Each minterm has a set of input subsignals. The minterm is the logical AND

of its subsignals. Each subsignal may be flagged as inverted.

A subcircuit includes a partition number, which was assigned to each gate by the
partitioning algorithm. There are also several measurements of a subcircuit’s size, used
during the recursive Shannonization process. These are the gate count, with which a
cofactor’s supply gating transistor was sized, and the subcircuit’s area and estimated
power, which were used to prevent Shannonization that would produce excessively large

or inefficient circuits.

Since communication with SIS required named signals, the circuit data structure has a
system of naming signals relative to the circuit tree. Each subcircuit and signal includes a
name. To allow any signal to be named relative to any subcircuit, a signal needs to have

a home subcircuit in which to anchor the signal name, so that a relative name can be
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resolved. Tying signals to particular subcircuits prevents copying and editing subcircuits,
important operations in the Shannonization process. So the system of naming signals
with relative subcircuit “pathnames” was never solved satisfactorily for this program. In
most parts of the program, editing subcircuits and naming signals is handled well with
this design, but there is also a lot of code to correct the subcircuit to which a signal’s

name is anchored.

A signal also has fields to indicate which cofactors depend on it for supply-gating, its
distance along the signal graph, in which gates are vertices, for logic cone analysis and an

extra link to a duplicate to facilitate copying subcircuit trees.

Partitioning Algorithm

Partitioning divides the circuit into subcircuits of a manageable size. The goal is to group
related gates so that there are a minimum number of signals straddling partitions.
Shannon expansion or any kind of logic synthesis, carried out on the individual partitions

is constrained by the input and output signals it must reproduce.

Partitioning is performed in terms of graph theory rather than logic gates, so a complete
circuit is represented by a hypergraph. A gate is a node, and a signal is a hyperedge. In
an ordinary graph, an edge connects a pair of nodes. But since a logic signal output can
fan out to many inputs, a signal has to be represented by a hyperedge, which can connect

many nodes.
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In this program, there is a similar distinction between circuits and graphs. The circuit
data structure is mapped onto a hypergraph data structure before partitioning is carried
out on the hypergraph. When complete, the circuit is divided into subcircuits using the

partition numbers from the hypergraph.

While the circuit is represented as a hypergraph, two stages are carried out called
coarsening and uncoarsening. During coarsening a series of progressively simpler
hypergraphs are produced that mean to represent the circuit at progressively higher
levels. This continues until the average node represents the desired number of nodes in
the original hypergraph. At the highest level, each node represents one partition. Then
during uncoarsening, the lower level nodes are assigned to their partitions and some are

reassigned temporarily to other partitions in search of a better configuration.

The hypergraphs form a linked list, each representing the original hypergraph at a
different level of abstraction. Each hypergraph contains a list of vertices and edges.
Each edge contains a list of vertices that the edge connects. Vertices do not contain lists
of edges because the bookkeeping would not be worth the effort. The list of vertices
associated with an edge must be sorted, so it is better to keep the connection information

in the edges.

Lowest level edges and vertices contain references to the subsignals and subcircuits each
represents, in order to map the hypergraph back to the circuit when partitioning is

finished. Edges and vertices also contain their current cost and the number of lowest

-25.-



level edges and vertices each represents so that the cost functions can be accurately
evaluated at the higher levels. Edges also contain the number of partitions spanned in
service of the hyperedge cost function. Finally, vertices contain the current and best

partition number, which is the indication of how the hypergraph is partitioned.

In each step of coarsening, a new, simpler hypergraph is produced to represent the
previous one. This is carried out by selecting a hyperedge and drawing together all the
nodes connected to that hyperedge into a group. The group is represented as a single
node in the simpler hypergraph. This is done repeatedly until all the nodes have been
drawn together. The hyperedges are represented in the simpler graph if they join distinct

groups of nodes.

Hyperedges are selected for drawing together by cost. Lowest cost edges have highest
priority. In this process, the cost of an edge includes the number of vertices connected
(similar to the number of partitions) but is subtracted from the cost of the joined vertices.
The purposes of this stage are to envelop expensive edges and join inexpensive vertices
leaving comparably expensive groups of vertices joined by cheaper edges. After these
costs are determined, the edges are sorted with lowest cost first. Then the vertices
attached to each edge are drawn together, but only if they form a group disjoint from any
other group. This process is repeated until there are no edges left. The groups need not
be disjoint across repetitions. (Finally, if there are any vertices remaining, each is taken

to the higher level as in own group.)
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Much of the rest of the coarsening process consists of constructing the new hypergraph
from the groups assigned to the nodes in the lower level hypergraph. Vertices in the new
hypergraph get the sum of the number of lower level vertices represented. Edges that are
entirely enveloped by this process are discarded. Edges that become parallel, joining the
same set of new vertices, are combined and the number of lower level edges represented
is summed. An edge that joins a subset of the vertices that are joined by another edge is
similarly combined into the larger edge. These are found by sorting the vertices of each
edge by partition number, which facilitates finding and discarding duplicate higher level
vertices. After the vertices within an edge are sorted, the edges are sorted by the number

of vertices, largest first, so subset edges always appear later on the list.

When the highest level of coarsening is reached, the number of vertices has reduces until
each vertex represents the desired number of lowest level vertices. At that point, each

vertex represents a partition.

At each step of uncoarsening, the partition numbers from the vertices at the next higher
level that represent a group at the lower level are assigned to the lower level vertices.

Then the cost of the entire hypergraph partitioning is evaluated and recorded as the best
partitioning encountered. Uncoarsening is then the repetition of the refinement process
and the best partitioning encountered is also recorded, and becomes the final product of

the partitioning algorithm.
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Refinement is carried out for the number of iterations given by the tunable parameter,
tries. In each iteration of refinement, a vertex is selected at random and the relative cost
of putting it in each partition is evaluated. Relative costs of putting the vertex in each
partition are evaluated simultaneously. Given the absolute cost of the hypergraph and the
relative cost of each partition, the absolute cost of moving the vertex to any partition can
be determined by subtracting the old partition's relative cost and adding the new
partition's relative cost to the old absolute cost. This allows for the use of a relative cost

calculation, which is simpler than an absolute calculation.

The relative cost is found by removing the vertex from its original partition and for each
partition evaluating the cost of having the vertex relative to not having it. Then for each
edge that includes the vertex, subtracting the edge cost from each partition in which the
edge has a vertex, except the vertex being tested. Of course, this will underestimate the

cost of putting the vertex in each partition, but it will do so for all partitions equally.

Once the relative cost for every partition is determined, the lowest cost partition other

than the vertex's current partition is selected. If this other partition has a lower cost than
the current partition, it is accepted; otherwise, the annealing strategy is used to determine
if it should be accepted in spite of having a higher cost. If it is accepted, the current cost
and the partitions' vertex count is updated, and for each edge that includes the vertex, the

vertex is positioned in the edge's list of vertices so that the partition numbers are in order.
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Cost Functions

The cost functions used in evaluating the quality of a partitioning are two: for hyperedges
and vertices in each partition. The original partitioning algorithm had a cost function for
hyperedges, which was essentially the (K-1) metric. The cost of a hyperedge was the
number of partitions, K, that it straddled, which therefore would require K-1 wires to
join. The number of vertices was constrained by a hard limit. That design was more
appropriate for mapping logic onto a fixed resource like an FPGA. For the current
application, the size of the partition is not important, but cannot be ignored. A circuit
with everything in one partition has no cost associated with hyperedges straddling
partitions, so there has to be a cost associated with too many vertices in a partition in

order to prevent a one partition circuit from being the ideal.

The early version of the cost function for vertices in a partition simply increased linearly
with the number of vertices. This had a tendency to leave orphan vertices in partitions by
themselves, so a 1/f term was added to penalize very small partitions and a tunable
parameter, vopt, was introduced to indicate the ideal number of vertices per partition, so

the cost of n vertices, nvert, was:

vV nver
opt  nvert

cost(nvert) =
nvert  vopt

But that gave partition sizes over a relatively wide range both above and below vopt so to
make that goal more desirable, the terms were squared. Finally, when the annealing

algorithm was implemented, it became important to have a zero cost that represented an
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ideal state. The existing vertex cost function had its minimum at two, so this offset was

removed leaving the final cost function for vertices in a partition:

vopt 2+ nvert

nvert vopt

cost(nvert) =

The hyperedge cost function was based on the original (K-1) metric, although that is only
relevant during uncoarsening. During coarsening, the partitions are still in the formative

stage.

In order to compare partitionings the cost of vertices and cost of edges need to be
combined into an overall cost. The number of partitions can be ignored, however. Itis
the same for the partitionings being compared. But the cost function for hyperedges is
evaluated for each hyperedge whereas the cost function for vertices is evaluated for each
partition. For the hyperedge function, the value was scaled down by vopt, which is a
number of vertices in a partition and multiplied by a new parameter, kvpe, which is

designed to be the cost of a vertex relative to a hyperedge. So the final hyperedge cost is:

(K-1)

cost =kvpe - —=
vopt

This leaves a cost per edge, which summed over all edges is a unitless result. As with the
cost of vertices, neither has any units of vertices or hyperedges, so they can be summed
together to get the overall cost of a partitioning. Of course there is no requirement that

these formulas match in units since they are dependent on tunable parameters and used to
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inform an heuristic, but the benefit of getting the units right is that the parameters are

more likely to work independent of scale, whether the circuit is small or large.

The hyperedge cost function is still dependent on the assumption that the number of
vertices and cut hyperedges are related independent of partition size. What if cut
hyperedges go as the square root of vertices? It would still be possible to get scale-
independent values of kvpe and vopt although it would change the meaning of kvpe. And

there were some tests that suggested the relationship was linear.

An earlier version of the program (version 2) had a metric for activity variance not in the
current version (version 3). That metric was designed to relate gates that had a similar
activity level so the Shannon expansion could be carried out on the most active gates
only, in order to save power without too much cost in circuit area. It was important to
use activity variance, not just activity, as a metric in order to cluster gates with a similar
activity level. If activity level were the metric, the most active gates would be the most
desirable to all partitions and the most active gates would be as likely to be split up
among rivals as clustered together. With that metric, there were three things to balance:
vertices, hyperedges and activity variance. But the goal of saving area was abandoned

when saving power proved difficult enough.

The design of a cost function for activity variance demonstrated the difficulty of working
with cost functions across the hierarchy of coarsened hypergraphs. Higher level vertices

are simply weighted according to the number of lower level vertices they represent.
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Higher level hyperedges have the weight of parallel lower level hyperedges and, more
crudely, the lower level hyperedges that straddle partitions. Activity variance was chosen
in part because it could be accurately scaled up to high levels by summing statistics. A
more useful measure would have been correlated activity relating gates that change

together, but no technique could be found to apply except at the level of individual gates.

Annealing Algorithm

The partitioning algorithm was improved with the inclusion of an annealing strategy.
Prior to this improvement, a greedy algorithm was used, which was just the trivial
strategy of choosing the alternative with the minimum cost. Annealing is more
sophisticated in order to avoid getting caught choosing the best among immediate
alternatives but not the best of all alternatives, some of which are not immediately

apparent.

During the uncoarsening phase, the hypergraph is refined by selecting a vertex at random
and determining the cost of moving it to each of the other partitions. The goal is to select
the best partition for the vertex, and then to do this repeatedly with a long series of
vertices to produce the best overall partitioning. But because only one vertex at a time is
a candidate for movement, better alternatives that appear only after moving two or more
vertices will not be found by a greedy algorithm. Instead, that was replaced with an
annealing strategy, which allows some temporary movement away from the goal in order

to increase the likelihood of reaching the goal overall.
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The refinement process still consists of a series of trials of selecting a vertex at random
and evaluating the cost of moving it to each other partition. The decision is whether to
leave the vertex in its original partition or to move it to the best alternative partition,
which was trivial with the greedy strategy. Note that the annealing strategy
implemented does not consider partitions other than the original and the lowest cost
alternative. The strategy could have been designed to chose a random partition as well as
a random vertex and evaluate the cost; however, the likelihood of stumbling upon an
improvement and the inefficiency of calculating the cost of moving to a single partition

made this design alternative impractical.

The annealing strategy requires only the cost of the original and alternative partitionings
and the history of these. The strategy's output is a Boolean flag which indicates whether
to move the vertex to the new partition or not. The strategy is named for the natural
process by which crystals are formed, where the system as a whole dissipates heat and
moves to a lower energy state although any particular part of the system may increase in
energy level, especially temporarily. The annealing strategy used in the program does
not model the movement of energy between parts of the system, but it does model the
likelihood that a part will enter a higher energy level and the overall tendency toward

lower levels over time.

The value of an annealing strategy is that it can overcome local cost minima in the graph
of possible partitionings. At any particular time, the current partitioning may be

represented as a node on the graph, and each change of one vertex to one other partition
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may be represented as an edge to an adjacent node. If the cost associated with each
adjacent node is higher than the current node, then any movement through the graph
requires at least a temporary movement to a higher cost partitioning. If the minimum
configuration is represented by a node elsewhere on the graph, then it can only be
reached via the higher cost partitioning. The greedy strategy is the only one that lacks
this capability, but the significance of the annealing strategy is that it tolerates the higher
cost configurations by amounts and durations that resemble physical systems, which have
been tested in the field. Any non-trivial strategy might be made to work but the design
was made to resemble annealing because it is know to be robust and efficient. In
particular, the cost functions were designed so that the ideal configuration representing
no cost had a value of zero. Of course, the minimal cost configuration is not known in
the program except in trivial cases, but this zero cost models the zero energy state or
absolute zero in temperature. This allows for proper scaling in comparing non-optimal

configurations.

Another important property of the strategy implemented is that it does not require any
adjustable parameters, except the number of iterations to run the refinement process. The
strategy scales the relative cost of the alternative partitioning relative to the current one.
The result is independent of the absolute scale of the cost functions. A negative result
represents a lower energy state, which is always accepted, just like the greedy algorithm.
But in annealing, a positive result is given further consideration. These are assumed to
form the positive half of a normal distribution. The assumption is that the cost of

successive partitionings resembles a signal with proportional noise. The signal reduces
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over time and the noise does as well. Scaling the relative alternative cost to the current
cost leaves only the noise, which is assumed normally distributed, at least on the positive
side. So a data point, x, depends on the cost of the current partitioning, cost, and the cost

of the alternative, newcost:

W — newcost — cost
cost

The values at this point have a mean of zero, but some measurement of the variability is
needed so the strategy can avoid selecting very high cost configurations. So the variance
of these values is computed; however, this would give the more weight to the earlier
values and maintain too long of a history. Instead, a weighted average of the squared
values is used as the variance, so that the weight of older values decays exponentially.
The choice of the weighting factor determines how long older values have significance.
The reciprocal of this weighting factor is the number of iterations before the significance
of a value has diminished to 37% of its original amount. That was selected to be the
square root of the number of iterations for the entire refinement process. Therefore,
refinement is as many iterations of the 37% diminishment cycle, as there are trials in each
diminishment cycle. So the variance, var, depends on the weighting factor, delta, the
data point, x, and the previous value of the variance, oldvar. And delta depends on the

number of iterations, ntries:
1
delta=———
A/ ntries

var = delta(x? — oldvar )+ oldvar
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The values are scaled by the square root of the variance, producing a z-score:

Zscore =

X
vvar

The probability density function for a normal distribution is used to relate the z-score
with the probability that the higher cost alternative will be accepted. The essence of the
annealing strategy is that there should be an exponential function of the cost that
produces two extremes, each with an infinitesimally small probability of occurring: one
in which an infinity bad alternative is accepted and one in which any higher cost
alternative is rejected. Clearly, the first case corresponds to an exponential approaching
zero at infinity and the second, one at zero. There is one degree of freedom left in such
an exponential, which appears as the reciprocal of the Boltzmann constant in the physical
equation. This is the coefficient of the argument to the exponential and determines the
steepness of the exponential function. By specifying the value of the coefficient, the

probability of the decision is determined.

The simplest way to express this function is as the desired probability raised to a power,
so that when the power is one, the result is the desired probability. This function will
give zero when the power is infinity, and one when the power is zero. The alternative
partitioning should be selected when a random number is less than this result. The power
must be a coefficient multiplied by the z-score so that the power is one when the z-score
corresponds to the desired probability. Therefore, the z-score of the alternative
partitioning is scaled by the z-score of the desired probability, which is the inverse

probability density function for a normal distribution of the desired probability.
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The inverse probability density function for a normal distribution, sometimes called the
probit function, can be difficult to compute. In fact, it has no closed form. But near the
center of the distribution, it is a relatively straight line. For the annealing strategy, the
probability of selecting a higher cost alternative partitioning was chosen to be 0.5 initially
and reduce linearly with the number of iterations to zero probability at the end. Since the
higher cost alternatives form only the positive half of a normal distribution, these
probabilities correspond to 0.75 to 0.5 on a complete bell curve and z-scores of 0.6745 to

zero. In this region, the normal distribution is almost flat. At zero, the value is

1/x/ 27 ~0.3989and at 0.6745, the value is about 0.3178. The inverse cumulative

function, probit, can be approximated by a straight line with slope /27 ~ 2.5 so that at
0.5, the error is zero and at 0.75, the error is 7%. Using a distribution that is only the

positive half of a normal distribution, this constant becomes 1.25.

So the wanted probability, prob, depends on the total number of iterations, ntries, and the
current iteration number, n. The value of the probit function, probit, depends on prob:

prob = O.SLMJ

tries
probit =1.25- prob

The decision to accept the alternative partitioning is made by the following expression.

The alternative is accepted when the expression is true. The right-hand side gives the
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probability that the partitioning with the z-score should be accepted given the average
probability, prob, and its probit function value, probit. The left-hand side of the

expression is a random number, r, between zero and one:

zscore

r < prob ™

In addition to the annealing strategy, an alternative partitioning is also accepted when its
cost is less than that of the current configuration. Since the annealing strategy allows
inferior partitionings to be pursued, the partitioning at the end of the uncoarsening
algorithm may not be the lowest cost configuration during the whole process. So the
algorithm keeps track of the lowest cost and the partitioning to go with it, which is what

is returned by the algorithm.

PMOS Supply Gating

The Shannon expansion technique saves power by switching off one set of gates or
another with an NMOS supply-gating transistor. The outputs of these sets of gates, the
cofactors, are combined in a multiplexer. But if one or the other of the cofactor outputs
were completely disabled, then the multiplexer itself could be eliminated and the outputs

of the cofactors tied together as the final output signal for the Shannonized circuit.

To switch off a cofactor completely requires PMOS supply-gating as well as the usual
NMOS supply-gating transistor. NMOS gating prevents a logical "0" signal from being
output when switched off while PMOS prevents a 1" from being passed. PMOS gating
is required only on the final level gates, not the entire cofactor, because the goal is only to
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disable the final output, not to switch off the gates to save power as with the NMOS
gating transistor. A gate with PMOS and NMOS supply gating resembles a tri-state
buffer where the inputs to the supply gating transistors are the inverted and non-inverted
signals that enable the output. If the original last level gates of both cofactors were
simple inverters, then with the supply gating and the outputs tied together, these buffers
would look a lot like a static CMOS inverting multiplexer. That makes sense, since the
goal is to obviate the multiplexer in the design without PMOS gating. So the purpose of
adding PMOS gating to the last level gates is to take advantage of the existing NMOS
gating and complete the formation of the multiplexer there, so no discrete multiplexer is

required.

The technique of using PMOS gating to avoid discrete multiplexers only works if each
final level gate has its own independent PMOS and NMOS supply gating transistors.
Shannonized circuits with multiple outputs cannot share gating transistors lest these form
unexpected electrical paths between the multiplexers. The consequences of sharing
gating transistors are evident in a circuit consisting of two static CMOS inverting
multiplexers with selector signal transistors tied together. The circuit is equivalent to a
Shannonized circuit with final level gates that are inverters and shared PMOS and NMOS
gating transistors. The following schematic shows the result with NMOS gating only.

Gates that are off are marked with an "X":
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Figure 8: PMOS Gating Circuit
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The flaw in the design is that when a supply-gating transistor is turned off it provides a

floating node that connects the two multiplexers together (between M4 and M5). For

some input vectors, the resulting circuit is a short through six transistors to ground. The

output signals are connected through transistors so the signals are weakened and a high

output has a lower voltage than it should and a low output has a higher voltage than it

should.

The solution to this problem is to use separate supply gating transistors.
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Test Output Files

The output of the program is a SPICE netlist that includes a table of circuit area
measurements. The file is input to a version of SPICE to measure power. Both the area
and power information is provided for the original and modified versions of the circuit so

they can be compared and tested.

Each version of the circuit is given in a subcircuit definition that consists of a list of
subcircuit calls to library gates. The circuits and library gates are defined with explicit
power supply nodes to facilitate the supply gating and to ensure independent
measurement of power for original and modified circuits. In the main body of the netlist,
each version of the circuit is called. The circuits share the same set of input signals, but
each has its own separate output signals and power supplies. Each output signal is loaded
with a fan-out-of-four inverters library subcircuit. The only other things in the SPICE
netlist are include file references, one for each input signal and one overall header file.
This organization allows the circuit descriptions to be stored separately from the input
vectors and to include only as many input vectors as are needed. The separate input
vector files and header file free the circuit description file of any cycle time information
or any peculiar syntax that might cause portability problems. The output of the program
works with both Linear Technology's LTSPICE and Synopsys's HSPICE but slightly

different header files were needed because of syntactical differences.
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The main header file contains the actual power supply voltage sources, directives to
record the power required from each, and the directive for temperature and to run the
transient analysis. The main header also has include file references to the transistor
models file and the gate library file. The input signal files were generated with a small
utility program that created SPICE PWL (arbitrary piece-wise linear) voltage sources for

random input vectors with certain specifications.

Test Conditions

The following conditions were used as the baseline conditions for power tests:
e Predictive 32 nm transistor technology
e 0.9V power supply
e Fan-out-of-four inverter loads on each output
e 5nscycle times (200 MHz clock frequency)
e 1000 cycles per test
e 20% input activity level
e 20 ps rise and fall times
e 110°C
e Two levels of Shannonization recursion

e Limits of 50% increase in area and estimated power (powered area) per partition

In addition, for certain tests, the 32 nm model was compared with 45 and 65 nm
technologies using a 1.0 V supply and the 5 ns clock was compared with 2 ns, 10 ns and

1 ps clocks. The largest benchmark, ¢6288, was run with only 100 cycles.
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The program output was designed to work with any convenient version of SPICE, but the
tests for this experiment were carried out using LTSPICE from Linear Technologies. For
several 10% length runs with five benchmark circuits, the results from LTSPICE were

compared with those of HSPICE, from Synopsys, and the two were found to agree within

1%.

Test Circuits

Tests were carried out on ten ISCAS-85 benchmarks and two other benchmark ALUS:

Name | Gates | Description Vopt
c432 184 | 27 channel interrupt controller 11
alu2 277 | 2-bit ALU (not ISCAS-85) 91
c880 451 | 8-bit ALU 15
c1908 466 | Error Correcting Circuit 10
c499 534 | Single-Error Correcting circuit with XORs 6
c1355 594 | Single-Error Correcting circuit with NANDs 7

c2670 776 | ALU with comparator, equality checker, parity trees 30

alud 816 | 4-bit ALU (not ISCAS-85) 100
c3540 | 1134 | 8-bit ALU with BCD arithmetic, logical shift 100
c5315 | 1743 | 9-bit ALU with addition, logic, parity 16
c7552 | 2126 | 32-bit adder, magnitude comparator, parity 22
c6288 | 2848 | Multiplier, 240 full- and half-adders 5

Table 1: Descriptions of Benchmark Circuits
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The vopt column included in the table above gives the optimal number of vertices (gates)
per partition, which were found experimentally to produce the greatest power savings in

the Shannonized version of the circuit under baseline conditions.

Larger circuits, alu4, ¢3540, ¢5315 ¢7552 and ¢6288, were not given the normal initial
technology mapping by the program because of limitations of the SIS logic synthesis
program, so these test results compare original circuits that were technology mapped by

other means compared with modified, partitioned circuits technology mapped by SIS.

A number of benchmark circuits include a few inherent partitions. Each has several
disjoint sets of signals and gates. There is nothing to be gained by merging these
partitions for Shannonization, and the program cannot be arranged to do so. The

minimum number of partitions for c2670 is 81; ¢5315 is 6; ¢7552 is 5 and ¢880 is 3.

Test Procedure

Tests were conducted to measure the power, area and delay of logic circuits synthesized
by the program in order to determine its performance. Power was measured using
LTSPICE. Area results were reported directly by the program. Delay was measured
using the Design Compiler from Synopsys. In its default operating mode, the program
outputs the circuit in SPICE format, but with an alternate output mode, it produced
Verilog format, for compatibility with the Design Compiler. This allowed for delay

results to be produced independent of power results. There is also a separate program, a
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UNIX awk script, to derive Verilog from the SPICE output, so as to avoid resynthesizing
the circuit from scratch and ensuring the circuits were equivalent. The Design compiler

was also used to test that the modified circuits contained no dependency loops.

In every case the original and modified circuits were tested side-by-side and the percent

change was reported according to the following formula:

X - X
%AX = T 100%
X

org
Since the desired outcome is less power, smaller area and shorter delays, improvements

are reported as negative numbers.

To ensure the modified circuits produced logic results equivalent to those of the original
circuit, all the outputs of the five smallest benchmarks were checked for logical

correctness for hundreds of input vectors, using SPICE.

For power tests, the program generated SPICE output with reference to an input signal
include file for each input signal. Of course, both the original and modified circuits used
the same inputs. The input signal files were SPICE PWL (piecewise linear source)
voltage sources generated randomly by a separate utility program. The voltage, cycle
time and rise and fall times were parameterized in these signal files. Each output signal
was tied to a fan-out-of-four inverters library subcircuit. Of course, original and
modified circuit outputs did not share outputs. The gates were referenced in the

generated SPICE output as subcircuits, defined in a separate gate library file.
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The program’s SPICE output referred to a general header include file, which
encapsulated parameters and measurements commands whose syntax tend to vary among
SPICE versions. The header file for baseline conditions follows:

* 32 nm, 5 ns header

-param T=5N
-param L=32N
-.include "32nm_bulk2005.sp™

.include "gatelib.sp”

-param TR=20P
-param V=0.9

VDDorg VDDorg O dc *"V*©
VSSorg VSSorg O dc O

VDDmod VDDmod O dc *V*
VSSmod VSSmod O dc O

*LTSPICE

.tran "1001*T" uic

.measure tran avgpowerorg avg abs(V(VDDorg)*1(VvDDorg))
trig time val="T"

.measure tran avgpowermod avg abs(V(VDDmod)*I(VDDmod))
trig time val="T"

.options temp=110

For delay tests, Verilog language output of original and modified circuits was analyzed
by the Design Compiler and the results extracted via the following script:

for a in $*; do
for suffix In .sp .org.v .mod.v; do
a="basename $a $suffix”
done
orgcmd="read -f verilog $a.org.v; report_timing"
modcmd=""read -f verilog $a.mod.v; report_timing"
cmd=$orgcmd
for 1 iIn org mod; do
orgval=$val
val="echo $cmd | dc_shell | \
nawk "/data arrival time/{print $4}""
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cmd=$modcmd

done

modval=$val

echo $a $orgval $modval | tr * " "\t~

done
This method of measuring delay does not account for the delay due to Shannonization, in
which the switching of cofactors due to the control variable adds a significant extra delay

of about 25%.

The gate library included inverter, NAND, NOR, AND and OR two-input gates. In order
to simplify the analysis using SIS, the library also included gates with each input

inverted. AAND and AOR had the A input inverted. BAND and BOR had B inverted.

Selection of Tunable Parameters

Over the course of the development of the program, tests were conducted to determine
the performance of the program, in terms of its ability to operate correctly, synthesize
Shannonized logic that was equivalent to the original circuit and to minimize power
consumption. Because of the development of these algorithms many new parameters
were introduced, though of course every attempt was made to avoid them by deriving

them from formulas based on general principles and existing parameters.

The remaining, tunable parameters may be changed by user of the program on the
command line or from environment variables. The default values for these were the best
values found experimentally during the development of the program. The performance

of the program is not particularly sensitive to most of these parameters either in terms of
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a change in the parameter value or the type of benchmark circuit under test, with the
exception of the parameters related to partitioning, vopt and seed. The vopt parameter is
the optimal number of vertices (or gates) per partition and seemed to vary significantly
with the type of circuit. The seed parameter is the random number seed for partitioning
and changes the particular partitioning. The program tries to group gates neatly with the
fewest signals between groups, but there is a significant amount of variability in how this

translates into a Shannonized circuit that requires minimum power.

Since there was no clear best single number for each of these two parameters, they were
adjusted in preliminary 10% length runs of the program before the final tests were
performed. Firstly, a series of vopt values were tried on the benchmark circuits under
baseline conditions. The vopt values tried were all seven values from four to ten,
inclusive, and 24 values in the decade up to 100, in the exponential series used for
resistor values. For each benchmark, the power and delay results were plotted log-
linearly and a second order curve fit was used to find the vopt that gave the minimum
power requirement, while allowing for the variability between runs due to the random
number seed. From these plots, optimal vopt values were selected by the advisor. For
each benchmark, the optimal vopt was used for most of the final tests. There was also a

series of final tests in which a series of vopt values were tried.

After the full complement of vopt values for each benchmark was determined, there was
still a need to consider the variability in performance due to “random” effects. The

partitioning algorithm uses random numbers because of a Monte Carlo aspect in selecting

-48 -



vertices of the hypergraph to consider moving to other partitions. The random number
seed variable has no meaning except that differ values give different partitionings, which
are of equivalent effectiveness, according to the partitioning algorithm. But the
partitioning cost function is not the same as the power saving measurement of the final
circuit, which appears as a random variation when the program is run with different seed

values.

Since the goal of program is to produce any synthesis of the logic that saves power, it is
legitimate to run the program repeatedly with several random numbers and select the
version that is best. That procedure is limited by the time required to carry it out. So to
take reasonable advantage of the variability in seed, five values were chosen at random
for five runs for each vopt value, for each benchmark. Because both seed and vopt are
important in partitioning, any selection of seed is dependent on the value of vopt;
however, Shannonization and its parameters are theoretically independent of partitioning
and its parameters, so there is no need to evaluate a selected seed with more than one set

of Shannonization parameters.

For the final test results, an optimal vopt was found for each benchmark and a seed was

selected for minimum power for each vopt for each benchmark.

Test Results

The following tables summarize the results of tests of the performance of the program in

using the Shannonization technique to synthesize logic with lower power without undue
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increase in area or delay. The tables are organized with a row for each benchmark circuit
and columns arranged primarily for power, area and delay and secondarily for a
parameter that is the subject of comparison. Except for the last table, all table entries are
percent change from original to modified circuit relative to the original, so decreases in

power, area and delay are expressed in the table as negative numbers.

Power Area Delay

vopt 10 25 50 100 10 25 50 100 10 25 50 100

c432 -16% -11% -5% 0% 2% 8%  28% 0% | -12% -2% -4% 0%
alu2 9% -13% 5% -14% | 11% 13% 19% 21% -9% 1% 9% -20%
c880 -20% -20% -18% -18% -2% -1% 7% 2% | -19% -14% -9% -9%
cl1908 | -26% -10% -10% -8% | -16% 1% 2% 10% -3% -4% 7% -8%
c499 -20%  -12% -7% -4% | -21% -5% -3% 5% 3% 8% 4% 3%
c1355 | -21% -9% -1% 2% | -21% -3% 6%  20% 4% 10% 15% 14%
c2670 | -11% -15% 1%  -11% -8% -T% -2% -4% -T% -4% 1% -11%
alu4 -2% -2% 3% 4% 6% % 12% 18% | 20% 37%  25% 9%
c3540 -1% -2% -1% -3% 1% 2% % 14% | 14% 12% 14% -1%
c5315 -6% -2% -3% -3% -4% 0% 3% 5% -5% 2% 3% -11%
c7552 -8% -4% -4% -7% -3% 6% 13% 56| 18% 31% 31% -T%

c6288 | -28% -7% 0% -2% 6% 15% 15% 12% | 46% 96% 27% 13%

Table 2: Comparison of Partition Sizes

The table above shows the effects of varying vopt, the optimal number of vertices (gates)
per partition, for the partitioning algorithm. The baseline conditions were used for these
tests but with no Shannonization recursion. Most circuits benefit from a small vopt, 25 or

less. ALUs tend to use the least power with large partitions.
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Power Area Delay

c432 -20% 5% 2%
alu2 -14% 22% -21%
c880 -22% -2% -10%

c1908 -26% -16% -3%

c499 -20% -24% 10%
c1355 -21% -23% 8%
€2670 -15% -5% -12%
alu4 4% 18% 9%
€3540 -3% 14% -1%
c5315 -5% -5% -5%
c7552 -5% 5% 10%

c6288 -42% -16% -11%

Table 3: Optimal Partition Sizes

The table above gives results for the optimal number of vertices (gates) per partition,
selected for each benchmark circuit. Again, the baseline conditions were used except that
no Shannonization recursion was used. Power savings are significant, varying from 20%
to 30% for many circuits. The cost in area was usually negative—the modified circuit
actually used less area—but some circuits required up to 10% more area. The delay time

varied from a 21% decrease to a 10% increase.
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Power Area Delay

c432 -19% 7% -3%

alu2 -12% 31% -22%

c880 -24% 2% | -14%

c1908 -28% -24% -9%
c499 -27% -35% -4%
c1355 -27% -36% -1%

€2670 -17% | -12% | -19%

alu4 5% 27% 15%
€3540 -4% 20% 11%
c5315 -5% -6% -14%

c7552 -8% 3% 3%

c6288 -40% -15% -9%

Table 4: Recursive Shannonization

The table above gives results for two level recursive Shannonization. The baseline
conditions were used for these tests. The power results were a bit better for the error
correcting circuits and just a few percent better for most other circuits. Except for alu4,
which actually required more power, the other circuits improved from 4% to 40%.

Overall, the power savings median was an 18% improvement.
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c432

alu2

€880

€1908

c499

c1355

€2670

alu4

€3540

c5315

c7552

c6288

Table 5: Relaxed Area Constraint

The table above gives results with the area of the modified circuit limited to a 70%
increase for each partition instead of 50%, and using baseline conditions otherwise. This
constraint relaxation had little effect and in fact most circuits synthesized no differently
because of it. Shannonization on a partition is aborted if the area or estimated power
constraint is exceeded. Estimated power is calculated as area for shared logic and
multiplexers but half of area for gates in the cofactors, which are estimated to be disabled
half of the time. Since this table allows area increases of as much as 70% but leaves
power increases limited to 50%, in almost all cases the Shannonization decision is
determined by the power constraint so the circuit is synthesized the same as with a 50%

area constraint. Only in rare instances is the circuit synthesized differently with the

relaxed constraint.

Power

Area

Delay

-17%

-12%

-23%

-28%

-27%

-27%

-12%

5%

-4%

-8%

-6%

-40%

10%

31%

-1%

-23%

-35%

-36%

-10%

27%

20%

-5%

8%

-14%

0%

-22%

-14%

-9%

-4%

-1%

-18%

15%

11%

-11%

34%

-10%
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Power Area Delay

len (nm) 32 45 65 32 45 65 32 45 65
c432 -19% -11% -4% 7% 7% 7% -3% -3% -3%
alu2 -12% -2% 560 | 31% 31% 31% | -22% -22% -22%
c880 -24%  -19%  -15% -2% -2% 2% | -14%  -14% -14%
c1908 -28% -21% -18% | -24% -24% -24% -9% -9% -9%
c499 27%  -20%  -17% | -35% -35% -35% -4% -4% -4%
c1355 27%  -22%  -19% | -36% -36% -36% -1% -1% -1%
€2670 -17% -14% 9% | -12% -12% -12% | -19% -19% -19%
alu4 5% 9% 13% | 27% 27% 27% 15% 15%  15%
¢3540 -4% 3% 7% | 20% 20% 20% 11% 11% 11%
€5315 -5% -3% -1% -6% -6% -6% | -14% -14% -14%
c7552 -8% -3% -1% 3% 3% 3% 3% 3% 3%
6288 -40% -43% -43% | -15% -15% -15% -9% -9% -9%

Table 6: Comparison of Technology Scales

The table above shows the effects of technology scales. The tests were conducted using
baseline conditions and the 32 nm predictive technology model from 2005 and 45 and 65
nm models generated by the Nano-CMOS program using default parameters except

Vth =0.16V and Vdd = 1.0V. These results show that the Shannonization technique
becomes more important as technology scales down. This occurs because leakage power
becomes the greatest form of power consumption below 45 nm, greater than dynamic
power. Area does not change significantly due to Shannonization with technology scale
and in this experiment, did not change at all. Delay did not change because this

experiment did not account for technology scale.
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Power Area Delay

cycle (ns) 2 5 10 1000

c432 9%  -19% -24% -31% 7% -3%
alu2 3% -12%  -17%  -23% | 31% | -22%
€880 -19%  -24%  -26% -30% -2% | -14%
c1908 -22% -28% -31% -37% | -24% -9%
c499 -20% -27% -30% -36% | -35% -4%
c1355 -22%  -27% -30% -34% | -36% -1%
c2670 9%  -17%  -20%  -23% | -12% | -19%
alu4 11% 5% 3% 0% 27% 15%
c3540 2% -4% -8% -14% 20% 11%
c5315 -5% 5% -11% -15% -6% | -14%
c7552 -4% -8% -10% -14% 3% 3%
6288 -44% -40% -37% -26% | -15% -9%

Table 7: Comparison of Cycle Times

The table above compares power consumption by cycle time. The tests were conducted
with baseline conditions except for cycle time. The baseline cycle time is 5 ns, which is
included in this table. For most circuits, power savings due to Shannonization increase
with cycle time because the technique saves leakage power and not dynamic power. For
the minimum cycle time, Shannonization is not effective because it introduces additional
switching elements. The table above includes results for 1000 ns = 1 ps cycle time,

which approximates static power consumption.

Area and delay are not functions of cycle time.
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Execution

Time (s)
c432 220.77
alu2 49.67
c880 38.78
c1908 50.11
c499 44.95
c1355 46.88
€c2670 129.52
alu4 557.75
c3540 231.74
c5315 335.37
c7552 434.62
c6288 613.46

Table 8: Execution Times

The table above gives execution time of the Shannonization program, including time to
run the SIS logic synthesis program. These runs were carried out using a GNU C++
compiled program run on a Red Hat Linux system with a 1.4 GHz AMD Athlon
processor. Execution time varied from 39 seconds to 10 minutes. Total memory required

for both programs simultaneously was about 10 MByte for the largest benchmark.

Future Work

Future work includes Shannon-aware partitioning, in which aspects of Shannon
decomposition influence partitioning. At minimum, this might include combining

partitions that use the same control variable. More generally, this might be a separate
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stage of moving gates near partition boundaries, selecting control variables and

evaluating the control variable selection criterion (fewest number of gates in the result).

A simple model of power consumption in switching circuits with supply gating
transistors would make it possible to compare alternative syntheses and search for the
best while the program is running, instead of waiting for a separate and slow SPICE

simulation.

This program means to automate the Shannonizing logic synthesis process, but there
needs to be a thorough analysis of small circuits to evaluate the program’s ability to

select the best partitioning and Shannonization.

This program operates on logic at the gate level. Better results might be possible by

applying Shannonization of a digital design at the RTL level as well.

Conclusion

With good partitioning, selection of a control variable and extraction of shared logic, it is
possible to significantly reduce power consumption in combinatorial logic, with a 18%
median improvement with ISCAS-85 benchmarks at the 32 nm level. Techniques such as
these will only become more important as leakage power becomes an ever greater share
of power consumption, as transistor technology scales down. This program demonstrates
that Shannon expansion power analysis can be an integral and valuable part of logic

synthesis software.
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