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Fine-Grained Supply Gating 

For Low Dynamic And Leakage Power 

Using Hypergraph Partitioning 

And Shannon Decomposition 

 

Abstract 

by 

LAWRENCE LEINWEBER 

 

Energy requirements and power density issues have a significant impact on 

microelectronic systems in the form of battery life and bulky cooling fans.  These 

problems continue to grow as leakage power becomes the predominant form of power 

consumption below 45 nm.  A design tool was developed to synthesize combinatorial 

logic with reduced power consumption using hypergraph partitioning and Shannon 

decomposition, which reduces leakage power by disabling unused logic in small clusters 

of gates.  The program demonstrates that these techniques can be fully automated.  The 

techniques are described and the results of tests with ISCAS-85 benchmarks are 

presented.  The power savings median value was an improvement of 18% with predictive 

32 nm technology. 
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Introduction 

Technological advances in semiconductor fabrication have lead to smaller transistors and 

higher clock speeds; however, power requirements have not scaled down at the same rate.  

As a result, power density has increased.  Energy requirements and power density issues 

have a significant impact on microelectonic systems as energy enters, remains in, and 

exits these systems.  In many systems, energy enters from a battery whose life limits the 

effectiveness and even the viability of mobile applications.  Energy remains in systems in 

the form of temperature, which constrains the performance and reliability of electronic 

devices.  And energy exits many systems via a heat sink or fan, which increases the cost 

and bulk of the system. 

 

Power is lost in the normal operation of digital systems.  Because they are designed to 

process information rather than perform physical work, power is only consumed because 

the system is realized from sub-optimum devices.  But the MOSFET integrated circuits 

used in the modern systems come close to optimal.  As the technology is pushed further, 

though, minor imperfections have become serious limitations. 

 

The most efficient logic systems are static CMOS, and the limited use of pass transistors.  

Power is lost in two ways, dynamically, when the circuit is switched, and statically, when 

the circuit is idle.  Dynamic power is consumed in short circuit power, when static 

CMOS has a path to ground during switching, and capacitive power, lost reversing the 

charges on capacitive loads in an FET circuit.  Static power is the leakage current from 

the power supply through the transistors to ground.  Leakage current includes sub-
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threshold leakage, due to the lowering of threshold voltages, and the comparatively minor 

effects of band-to-band tunneling and gate leakage. 

 

Until recently, dynamic power had been the only significant form of power consumption; 

however, success in controlling dynamic power has exposed the secondary problem of 

static power, especially sub-threshold leakage, and some of the success with dynamic 

power has been at the expense of static power.  Dynamic power scales as the square of 

voltage, so supply voltages have been scaled aggressively.  Lower supply voltages 

require lower switching threshold voltages, which leads to greater sub-threshold leakage.  

Higher operating temperatures also aggravate sub-threshold leakage.  In the 45 nm 

regime, leakage power has caught up with dynamic power as the greatest form of power 

consumption. 

 

One of the most fruitful ideas among the many techniques for saving power is reducing 

the power of unused sections of large systems.  Power is saved by raising the threshold 

voltage or switching off the power supply.  Transistors are the obvious choice for 

switching.  On the small scale, transistors within gates have lower leakage when in series.  

Stacked transistors reverse bias the gate-source voltage.  On the large scale, an entire 

ALU or the like can be put into sleep mode by wide supply gating transistors. 

 

Shannon Expansion 

This technique on the scale of a few to one hundred gates is based on the Shannon 

expansion, in which a Boolean expression is factored into two terms, one in which a 
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control variable is factored as false and another in which the control variable is factored 

as true: 

xfxfxf ⋅+⋅= )1()0()(  

 

The logic for f(0) is stacked with a supply-gating transistor controlled by x  and the logic 

for f(1) is stacked with a transistor controlled by x .  The outputs of the two are combined 

in a multiplexer controlled by x  and x , as illustrated below: 

 

x'

f(0)

x

f(1)

x'

x

f(x)

 

Figure 1: General Shannonized Function 

 

This Shannon decomposition technique requires that the circuit be factored into two 

subexpressions, or cofactors.  This is always possible but if not done carefully can lead to 

some redundant logic.  To prevent this, consider the following equation:  

xxhgxxhgxhxg ⋅+⋅= ))(,1())(,0())(,(  
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Here g is factored with respect to x.  The functional value h(x) is clearly an input to both 

cofactors of g.  The shared logic that produces any signal that would appear in both 

cofactors should be implemented once independent of the cofactors and the resultant 

signal used as an input to each cofactor.  It is important to identify such signals when 

developing the cofactors in order to avoid implementing the same logic twice, which 

wastes area and consumes some leakage power in the disabled, redundant copy. 

  

The full implementation is illustrated below: 

 

x'

g(0,y)

x

g(1,y)

x'

x

g(x,h(x))
h(x)x y

 

Figure 2: General Shannonized Function with Shared Logic 

 

Factoring out common logic subexpressions at the input of a system to which Shannon 

decomposition is applied is a refinement that broadens the range of circuits to which the 

technique can be applied effectively.  It is also useful to factor out post-multiplexer logic, 

but that was not done in the implementation of the program to synthesize Shannonized 

circuitry. 
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It is not possible to factor out post-multiplexer logic or even to separate cofactors by 

simply expressing the output signals in terms of the input signals in sum-of-products 

form unless the number of inputs is small because each additional input can double the 

number of minterms required to express the output.  The worst case is 2n-1 minterms for n 

inputs, which occurs in an n input exclusive-OR gate. 

 

The stacking transistors are NMOS because of the higher mobility of electrons.  The 

multiplexer is typically a pass transistor design; however, if the last stage of logic before 

the multiplexer in each cofactor is supply gated with PMOS as well as NMOS, no 

multiplexer is needed, but each last stage gate must have its own PMOS and NMOS 

supply gating transistors.  It is not possible to share these transistors between gates if 

more than one output is Shannonized, which is discussed in the PMOS supply gating 

section below. 

 

Literature Survey 

This work is primarily an automatic tool for synthesizing combinatorial logic to save 

power using the Shannonization technique.  The task of synthesizing logic generally is 

left to the SIS [1] logic synthesis tool.  SIS is fairly obsolete but the goal here is to 

demonstrate how to improve a circuit with Shannonization, not to produce the best 

synthesized result in absolute terms.  A practical use of this work would be to marry the 

design of the Shannonization program with state-of-the-art synthesis tools. 
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This work is based primarily on the work of my advisor [2], who described the design of 

an automatic tool to synthesize logic with Shannonization so the resulting circuit saved 

power.  Most of those ideas are adopted here, including the use of recursion.  One idea 

that was not adopted was collapsing the logic into sum-of-products form.  The number of 

minterms can increase exponentially as the number of inputs increases linearly. 

 

It is not practical to use Shannonization on an arbitrarily large circuit because any 

particular input soon has little influence on the gates deep in its logic cone.  The cofactors 

are better when they are more independent, so the distance between inputs and 

multiplexers is better kept to a reasonable size.  Operating on an arbitrarily large circuit 

requires the circuit be divided into partitions each of which is Shannonized 

independently.  Most of the ideas for hypergraph partitioning are taken from a paper by 

Karypis [3].  A partitioning algorithm specifically oriented toward logic circuits is 

described in a paper by Saab [4]. 

 

Tschanz, et al., describe some of the problems and compare some of the solutions for 

reducing leakage power [5]. 

 

D. Sylvester and H. Kaul provide a survey of the power related problems in nanometer 

logic [6]. 

 

The ISCAS-85 benchmarks are described at the RTL level by M. Hansen, H. Yalcin, and 

J. P. Hayes [7]. 
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The 32 nm predictive technology model is described by Cao, et al [8].  The Nano-CMOS 

program and those PTM models were developed by Cao, et al [9]. 

 

Shannonization 

The Shannonization process begins with a circuit encoded in BLIF (Berkeley Logic 

Interchange Format).  This format represents a logic circuit as a series of truth tables.  For 

example, a circuit that performs a test for equality of a pair of two bit numbers performs 

the operation: 

equal = a[1:0] == b[1:0] 
 

This can be represented in terms of simple gates as follows: 

e0 = a0 XNOR b0 
e1 = a1 XNOR b1 
equal = e0 AND e1 
 

This is coded in BLIF as follows: 

.model equal 

.inputs a0 a1 b0 b1 

.outputs equal 

.names a0 b0 e0 
00 1 
11 1 
.names a1 b1 e1 
00 1 
11 1 
.names e0 e1 equal 
11 1 
 

The .names line represents the header of a truth table with the output last.  The lines 

that follow give the body of the table with the output "1" last.  Input combinations not 
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given in the table are understood to produce a "0" output.  A "don't care" input value 

would be indicated with a "–" symbol. 

 

The equality function can be represented in a logic diagram as follows: 

a0
b0

a1
b1

e0

e1

equal

 

Figure 3: Logic Diagram of Equality Function 

 

After the circuit in read into the internal data structure, it is given an initial technology 

mapping using Berkeley's SIS, the sequential circuit synthesis program.  The initial 

mapping is important in judging the performance of the Shannonization technique so that 

the original and modified versions of the circuit have each been technology mapped by 

SIS.  If the initial mapping is not performed then the statistics will compare the quality of 

the synthesis of the given circuit with the synthesis performed by SIS on the Shannonized 

circuit.  The initial mapping is required if the given circuit is not technology mapped and 

includes functions that are more complex.  However, the initial mapping by SIS is not 

possible for large circuits of 1000 gates or more; therefore, the initial mapping feature is 

optional. 
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In the equality function example, initial mapping is necessary because exclusive-NOR is 

not an elementary gate in the gate library used.  Technology mapping gives the following 

result: 

0  

     2
1  

3

b0

a0 129

131
4

70

114

5  

     7
6  

8

b1

a1 130

132
9

68

110

    10
equal

106

104

 

Figure 4: Logic Diagram of Technology Mapped Equality Function 

 

Next, the circuit is partitioned and then Shannonization is performed on each partition 

independently.  In this example, the circuit contains only eleven gates so partitioning is 

not necessary and Shannonization is performed once on the entire circuit. 

 

Shannonization begins with the selection of a control variable, an input signal used to 

divide the circuit into two parts, one in which the control variable is false and another in 

which it is true.  The goal of the analysis is to select a variable to minimize power, which 

is likely to occur for the circuit with the fewest number of gates. 
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The analysis is performed for each input signal by creating two copying of the circuit and 

setting the signal to false in one copy and true in the other.  This makes some gates trivial 

and these are removed before the total number of gates is counted.  The best candidate 

signals, which give circuits with the least number of gates, are then analyzed again, but 

this time each copy is fully technology mapped.  The signal that gives the least number of 

gates with this more thorough test is made the control variable for the circuit partition.  

The number of candidate signals is three by default, but may be changed. 

 

In this example, every input produces a circuit with the same number of gates.  In each 

case, when one of the inputs is set to a constant, one half of the circuit in the technology 

mapped logic diagram above reduces to a triviality.  That every input is an equally good 

choice is as expected since all the inputs to this function are symmetric.  In this example, 

a0 is the control variable, chosen arbitrarily. 

 

Once the control variable is selected, the basic cofactored, or two-part, circuit is 

constructed.  The two cofactor subcircuits are created, one in which the control variable is 

false and the other in which it is true.  The inputs to the original circuit are connected to 

both cofactors, except for the control variable, which is not an input to the cofactors.  The 

outputs from the two cofactors are combined in a series of multiplexers, one for each 

output, to produce the outputs of the original circuit.  The control variable is the selector 

signal for all the multiplexers.  An inverter provides the inverse of the control variable 

signal, also connected to all multiplexers.  When the cofactor circuits are created, they are 
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technology mapped but not fully simplified in order to aid in identifying shared logic in 

the next step. 

 

The circuit is divided into three subcircuits.  CF2 is the subcircuit in which the control 

variable is false; CF1 has the control variable true.  MUX is the subcircuit that contains 

the multiplexers and the inverter for the control variable.  The following logic diagram 

shows the cofactored circuit for the equality function example: 

b1
a1 CF2/66

CF2/92

CF1/66

CF1/93

MUX/a0

a0

MUX/a0

equal

CF2

CF1 MUX

CF2/88

CF1/89

CF2/equal

CF1/equal

a0b0

 

Figure 5: Logic Diagram of Cofactored Equality Function 

 

Next, the cofactors are combined into a single shared subcircuit and resynthesized, to find 

and eliminate redundant logic.  The goal of this step is to identify the logic that appears in 

both cofactors.  This problem occurs because some logic lay outside the logic cone of the 
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control variable.  When the cofactors were created, they each had been simplified 

somewhat because the control variable was set to a constant.  However, some of the 

remaining logic, especially near other inputs, was unaffected by the control variable.  

That logic was duplicated between the cofactors.  The goal of cofactoring is to save 

power by disabling unused logic, but logic that appears in both cofactors is never 

disabled and only wasted area.  Therefore, this step of Shannonization removes redundant 

logic, but leaves the cofactored logic combined in a single subcircuit. 

 

The following logic diagram shows the equality function example with redundant logic 

eliminated: 

b1
a1 7

8

MUX/a0

a0

MUX/a0

equal

SL MUX

0

1

CF2/equal

CF1/equal

a0b0

2

 

Figure 6: Logic Diagram of Equality Function with Shared Logic 

 

At this point, the circuit is organized so that logic used by both cofactors can be 

separated, as pre-multiplexer shared logic, and logic used by each cofactor can be supply 

 - 16 -  



gated.  This Shannonization technique does not attempt to identify post-multiplexer 

shared logic. 

 

In the next step, the logic is separated into two cofactors and the shared logic.  The logic 

cone of each gate includes the CF1 and/or CF2 inputs of some multiplexers.  If the cone 

includes both cofactors, then the gate is shared logic.  The analysis is carried out by 

tracing the output signals back from the multiplexers, flagging each new gate as required 

in CF1 or CF2.  Gates flagged as both are placed in the SL, shared logic subcircuit.  

Gates flagged as required by one or the other are placed in the CF1 subcircuit or the CF2 

subcircuit, to be supply gated. 

 

Finally, each of the three subcircuits is given a final technology mapping.  Then NMOS 

supply gating transistors are added.  The gating transistor for CF1 is switched by the 

control variable.  The gating transistor for CF2 is switched by the inverse of the control 

variable. 

 

The following logic diagram shows the final version of the Shannonized equality function 

example. The shared logic is slightly different than in the diagram above due to 

technology mapping, but the CF1 and CF2 logic is the same as above.  In the diagram 

below, supply gating is represented as a transistor connected to a cofactor block, 

indicating that each gate in the cofactor is connected to the virtual ground provided by the 

drain of the gating transistor. 
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b0
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2 3  
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a0
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Figure 7: Logic Diagram of Shannonized Equality Function 

 

Shannonization is not carried out if the resulting circuit requires excessive area or 

estimated power.  Power is estimated as area but halved for gates in the cofactors which 

have a 50% probability of being enabled, depending on the input vector.  If the resulting 

subcircuit requires a 50% increase in area or power over the original, Shannonization is 

aborted and the original subcircuit is kept, unmodified.  The limits in area and power 

increase can be changed, independently, by the user of the program.  The Shannonization 

technique is applied recursively to a depth of two, but this is an option that can be 

changed by the user.  A depth of one defeats the recursion feature.   

 

The output of the program is a SPICE file with the original circuit, after the initial 

technology mapping, and the modified, Shannonized circuit, each arranged as a 
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subcircuit, which can be simulated and compared.  Each gate is listed as a subcircuit 

reference to a gate library. 

 

For the equality function example, the following SPICE subcircuits are generated by the 

program when given the BLIF input above.  These subcircuits are represented graphically 

in logic diagrams above. 

.SUBCKT equalorg _a0 _a1 _b0 _b1 _equal _VDD _VSS 
XU0 _[129] _a0 _VDD _VSS _VDD _VSS inv1 
XU1 _[131] _b0 _VDD _VSS _VDD _VSS inv1 
XU2 _[70] _[129] _[131] _VDD _VSS _VDD _VSS and2 
XU3 _[114] _[129] _b0 _VDD _VSS _VDD _VSS bor2 
XU4 _[106] _[70] _[114] _VDD _VSS _VDD _VSS bor2 
XU5 _[130] _a1 _VDD _VSS _VDD _VSS inv1 
XU6 _[132] _b1 _VDD _VSS _VDD _VSS inv1 
XU7 _[68] _[130] _[132] _VDD _VSS _VDD _VSS and2 
XU8 _[110] _[130] _b1 _VDD _VSS _VDD _VSS bor2 
XU9 _[104] _[68] _[110] _VDD _VSS _VDD _VSS bor2 
XU10 _equal _[106] _[104] _VDD _VSS _VDD _VSS and2 
.ENDS 
  
.SUBCKT equalmod _a0 _a1 _b0 _b1 _equal _VDD _VSS 
XU0 _0/MUX/a0 _a0 _VDD _VSS _VDD _VSS inv1 
XU1 _equal _0/MUX/a0 _a0 _0/CF2/equal _0/CF1/equal _VDD _VSS _VDD 

_VSS mux21 
XU2 _0/SL/[0] _b0 _0/SL/[2] _VDD _0/CF2/VSS _VDD _VSS bor2 
XU3 _0/CF2/equal _0/SL/[0] _VDD _0/CF2/VSS _VDD _VSS inv1 
XU4 _0/SL/[1] _b0 _0/SL/[2] _VDD _0/CF1/VSS _VDD _VSS nand2 
XU5 _0/CF1/equal _0/SL/[1] _VDD _0/CF1/VSS _VDD _VSS inv1 
XU6 _0/SL/[68] _a1 _b1 _VDD _VSS _VDD _VSS nor2 
XU7 _0/SL/[90] _a1 _b1 _VDD _VSS _VDD _VSS nand2 
XU8 _0/SL/[2] _0/SL/[68] _0/SL/[90] _VDD _VSS _VDD _VSS bor2 
XU9 _0/CF2/VSS _0/MUX/a0 _VDD _VSS _VDD _VSS nmosgate N=2 
XU10 _0/CF1/VSS _a0 _VDD _VSS _VDD _VSS nmosgate N=2 
.ENDS 
 
 

Synthesis Flows 

The following flowcharts show the major steps in the synthesis process.  The Power3 

flowchart is the top-level organization, which consists of technology mapping the given 

logic description, partitioning, and performing recursive Shannonization on each 
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partition.  The Reshannonize flowchart indicates that the cofactors and shared logic of 

each Shannonized subcircuit is reprocessed until the recursion depth limit is reached. 

Power3

Partition

Reshannonize 
Partition

More 
Partitions?

Size Supply Gating 
Transistors

End

No
Yes

Technology Map

 

Reshannonize

Recursion 
Depth 

Reached?

Shannonize

Success?

Reshannonize 
Cofactor 2

Reshannonize 
Shared Logic

Reshannonize 
Cofactor 1

Return

No

Yes

Yes

No

 

 

In the last two flowcharts below, the details of Shannonization are carried out.  The 

control variable is selected by counting gates for each input signal set to a constant and 

the trivialized gates removed.  The top three candidates are evaluated again after a full 

technology mapping.  Candidates are tested to avoid creating a dependency loop.  Then 

the multiplexers and supply gating transistors are built.  The circuit is divided into 
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cofactors.  Then the shared logic is found and separated and the final technology mapping 

is performed.  If the result exceeds power or area limits, the Shannonization is aborted. 
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Yes

No

 

 

Circuit Representation 

In the most general form, circuits consist of components connected by wires.  This is the 

form used for analog electrical circuit analysis by the program SPICE from Berkeley.  At 
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the logic synthesis level, a circuit is a system of gates connected by signals.  Each signal 

is the output of one gate.  An input signal to the circuit is presumed driven by an external 

gate.  Each other signal is driven by an internal gate.  This is the form used for logic 

analysis by the program SIS, also from Berkeley.  Communication with the SIS program 

is done in BLIF, Berkeley Logic Interchange Format. 

 

For sophisticated techniques, a system of gates and signals is not adequate to represent a 

circuit.  A two-tiered system is needed to support partitioning.  Moreover, a full 

hierarchical system provides the flexibility for the recursive application of the Shannon 

Expansion technique.  Therefore, a circuit includes a tree of subcircuits and a set of 

signals.  Each signal includes a tree of subsignals.  The tree of a signal is a subtree of the 

circuit tree. 

 

The data structure that represents a subcircuit includes links to its siblings, children, and 

parent as well as the circuit to which it belongs.  Similarly, the data structure that 

represents a subsignal includes links to its siblings, children, and parent as well as the 

signal to which it belongs.  There is also a link, called a join, from each subsignal to a 

subcircuit that represent the connection of a subsignal to a subcircuit, so that each 

subcircuit can enumerate its list of connecting subsignals.  A connection can be one of 

several types: input, output, internal or power supply. 

 

Typically, the order of subsignals within a subcircuit is not important.  In this 

representation, subsignals are organized into signal trees.  For communication with SIS, 
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signals are identified by name.  With SPICE, component nodes are identified by position, 

but most gates represent commutative logical operations, in which order has no effect.  

However, for some gates, especially multiplexers, order matters.  For this purpose, the 

data structure maintains the order of subsignals within a subcircuit. 

 

Despite the general hierarchical organization, the lowest two levels of the circuit 

hierarchy always represent gates as sums of products and minterms.  A sum of products 

subcircuit is understood to represent a gate by having one output subsignal, a set of input 

subsignals, and a set of minterm subcircuits.  The sum of products is the logical OR of its 

minterms.  Each minterm has a set of input subsignals.  The minterm is the logical AND 

of its subsignals.  Each subsignal may be flagged as inverted. 

 

A subcircuit includes a partition number, which was assigned to each gate by the 

partitioning algorithm.  There are also several measurements of a subcircuit’s size, used 

during the recursive Shannonization process.  These are the gate count, with which a 

cofactor’s supply gating transistor was sized, and the subcircuit’s area and estimated 

power, which were used to prevent Shannonization that would produce excessively large 

or inefficient circuits. 

 

Since communication with SIS required named signals, the circuit data structure has a 

system of naming signals relative to the circuit tree.  Each subcircuit and signal includes a 

name.  To allow any signal to be named relative to any subcircuit, a signal needs to have 

a home subcircuit in which to anchor the signal name, so that a relative name can be 
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resolved.  Tying signals to particular subcircuits prevents copying and editing subcircuits, 

important operations in the Shannonization process.  So the system of naming signals 

with relative subcircuit “pathnames” was never solved satisfactorily for this program.  In 

most parts of the program, editing subcircuits and naming signals is handled well with 

this design, but there is also a lot of code to correct the subcircuit to which a signal's 

name is anchored. 

 

A signal also has fields to indicate which cofactors depend on it for supply-gating, its 

distance along the signal graph, in which gates are vertices, for logic cone analysis and an 

extra link to a duplicate to facilitate copying subcircuit trees.  

 

Partitioning Algorithm 

Partitioning divides the circuit into subcircuits of a manageable size.  The goal is to group 

related gates so that there are a minimum number of signals straddling partitions.  

Shannon expansion or any kind of logic synthesis, carried out on the individual partitions 

is constrained by the input and output signals it must reproduce. 

 

Partitioning is performed in terms of graph theory rather than logic gates, so a complete 

circuit is represented by a hypergraph.  A gate is a node, and a signal is a hyperedge.  In 

an ordinary graph, an edge connects a pair of nodes.  But since a logic signal output can 

fan out to many inputs, a signal has to be represented by a hyperedge, which can connect 

many nodes. 

 

 - 24 -  



In this program, there is a similar distinction between circuits and graphs.  The circuit 

data structure is mapped onto a hypergraph data structure before partitioning is carried 

out on the hypergraph.  When complete, the circuit is divided into subcircuits using the 

partition numbers from the hypergraph. 

 

While the circuit is represented as a hypergraph, two stages are carried out called 

coarsening and uncoarsening.  During coarsening a series of progressively simpler 

hypergraphs are produced that mean to represent the circuit at progressively higher 

levels.  This continues until the average node represents the desired number of nodes in 

the original hypergraph.  At the highest level, each node represents one partition.  Then 

during uncoarsening, the lower level nodes are assigned to their partitions and some are 

reassigned temporarily to other partitions in search of a better configuration. 

 

The hypergraphs form a linked list, each representing the original hypergraph at a 

different level of abstraction.  Each hypergraph contains a list of vertices and edges.  

Each edge contains a list of vertices that the edge connects.  Vertices do not contain lists 

of edges because the bookkeeping would not be worth the effort.  The list of vertices 

associated with an edge must be sorted, so it is better to keep the connection information 

in the edges. 

 

Lowest level edges and vertices contain references to the subsignals and subcircuits each 

represents, in order to map the hypergraph back to the circuit when partitioning is 

finished.  Edges and vertices also contain their current cost and the number of lowest 
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level edges and vertices each represents so that the cost functions can be accurately 

evaluated at the higher levels.  Edges also contain the number of partitions spanned in 

service of the hyperedge cost function.  Finally, vertices contain the current and best 

partition number, which is the indication of how the hypergraph is partitioned. 

 

In each step of coarsening, a new, simpler hypergraph is produced to represent the 

previous one.  This is carried out by selecting a hyperedge and drawing together all the 

nodes connected to that hyperedge into a group.  The group is represented as a single 

node in the simpler hypergraph.  This is done repeatedly until all the nodes have been 

drawn together.  The hyperedges are represented in the simpler graph if they join distinct 

groups of nodes. 

 

Hyperedges are selected for drawing together by cost.  Lowest cost edges have highest 

priority.  In this process, the cost of an edge includes the number of vertices connected 

(similar to the number of partitions) but is subtracted from the cost of the joined vertices.  

The purposes of this stage are to envelop expensive edges and join inexpensive vertices 

leaving comparably expensive groups of vertices joined by cheaper edges.  After these 

costs are determined, the edges are sorted with lowest cost first.  Then the vertices 

attached to each edge are drawn together, but only if they form a group disjoint from any 

other group.  This process is repeated until there are no edges left.  The groups need not 

be disjoint across repetitions.  (Finally, if there are any vertices remaining, each is taken 

to the higher level as in own group.) 
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Much of the rest of the coarsening process consists of constructing the new hypergraph 

from the groups assigned to the nodes in the lower level hypergraph.  Vertices in the new 

hypergraph get the sum of the number of lower level vertices represented.  Edges that are 

entirely enveloped by this process are discarded.  Edges that become parallel, joining the 

same set of new vertices, are combined and the number of lower level edges represented 

is summed.  An edge that joins a subset of the vertices that are joined by another edge is 

similarly combined into the larger edge.  These are found by sorting the vertices of each 

edge by partition number, which facilitates finding and discarding duplicate higher level 

vertices.  After the vertices within an edge are sorted, the edges are sorted by the number 

of vertices, largest first, so subset edges always appear later on the list. 

 

When the highest level of coarsening is reached, the number of vertices has reduces until 

each vertex represents the desired number of lowest level vertices.  At that point, each 

vertex represents a partition. 

 

At each step of uncoarsening, the partition numbers from the vertices at the next higher 

level that represent a group at the lower level are assigned to the lower level vertices.  

Then the cost of the entire hypergraph partitioning is evaluated and recorded as the best 

partitioning encountered.  Uncoarsening is then the repetition of the refinement process 

and the best partitioning encountered is also recorded, and becomes the final product of 

the partitioning algorithm. 
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Refinement is carried out for the number of iterations given by the tunable parameter, 

tries.  In each iteration of refinement, a vertex is selected at random and the relative cost 

of putting it in each partition is evaluated.  Relative costs of putting the vertex in each 

partition are evaluated simultaneously.  Given the absolute cost of the hypergraph and the 

relative cost of each partition, the absolute cost of moving the vertex to any partition can 

be determined by subtracting the old partition's relative cost and adding the new 

partition's relative cost to the old absolute cost.  This allows for the use of a relative cost 

calculation, which is simpler than an absolute calculation. 

 

The relative cost is found by removing the vertex from its original partition and for each 

partition evaluating the cost of having the vertex relative to not having it.  Then for each 

edge that includes the vertex, subtracting the edge cost from each partition in which the 

edge has a vertex, except the vertex being tested.  Of course, this will underestimate the 

cost of putting the vertex in each partition, but it will do so for all partitions equally. 

 

Once the relative cost for every partition is determined, the lowest cost partition other 

than the vertex's current partition is selected.  If this other partition has a lower cost than 

the current partition, it is accepted; otherwise, the annealing strategy is used to determine 

if it should be accepted in spite of having a higher cost.  If it is accepted, the current cost 

and the partitions' vertex count is updated, and for each edge that includes the vertex, the 

vertex is positioned in the edge's list of vertices so that the partition numbers are in order. 
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Cost Functions 

The cost functions used in evaluating the quality of a partitioning are two: for hyperedges 

and vertices in each partition.  The original partitioning algorithm had a cost function for 

hyperedges, which was essentially the (K–1) metric.  The cost of a hyperedge was the 

number of partitions, K, that it straddled, which therefore would require K–1 wires to 

join.  The number of vertices was constrained by a hard limit.  That design was more 

appropriate for mapping logic onto a fixed resource like an FPGA.  For the current 

application, the size of the partition is not important, but cannot be ignored.  A circuit 

with everything in one partition has no cost associated with hyperedges straddling 

partitions, so there has to be a cost associated with too many vertices in a partition in 

order to prevent a one partition circuit from being the ideal. 

 

The early version of the cost function for vertices in a partition simply increased linearly 

with the number of vertices.  This had a tendency to leave orphan vertices in partitions by 

themselves, so a 1/f term was added to penalize very small partitions and a tunable 

parameter, vopt, was introduced to indicate the ideal number of vertices per partition, so 

the cost of n vertices, nvert, was: 

vopt
nvert

nvert
voptnvertcost +=)(  

 

But that gave partition sizes over a relatively wide range both above and below vopt so to 

make that goal more desirable, the terms were squared.  Finally, when the annealing 

algorithm was implemented, it became important to have a zero cost that represented an 
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ideal state.  The existing vertex cost function had its minimum at two, so this offset was 

removed leaving the final cost function for vertices in a partition: 

2)(

22

−+= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
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vopt
nvert

nvert
vopt

nvertcost  

 

The hyperedge cost function was based on the original (K–1) metric, although that is only 

relevant during uncoarsening.  During coarsening, the partitions are still in the formative 

stage. 

 

In order to compare partitionings the cost of vertices and cost of edges need to be 

combined into an overall cost.  The number of partitions can be ignored, however.  It is 

the same for the partitionings being compared.  But the cost function for hyperedges is 

evaluated for each hyperedge whereas the cost function for vertices is evaluated for each 

partition.  For the hyperedge function, the value was scaled down by vopt, which is a 

number of vertices in a partition and multiplied by a new parameter, kvpe, which is 

designed to be the cost of a vertex relative to a hyperedge.  So the final hyperedge cost is: 

( )
vopt
Kkvpecost 1−

⋅=  

 

This leaves a cost per edge, which summed over all edges is a unitless result.  As with the 

cost of vertices, neither has any units of vertices or hyperedges, so they can be summed 

together to get the overall cost of a partitioning.  Of course there is no requirement that 

these formulas match in units since they are dependent on tunable parameters and used to 
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inform an heuristic, but the benefit of getting the units right is that the parameters are 

more likely to work independent of scale, whether the circuit is small or large. 

 

The hyperedge cost function is still dependent on the assumption that the number of 

vertices and cut hyperedges are related independent of partition size.  What if cut 

hyperedges go as the square root of vertices?  It would still be possible to get scale-

independent values of kvpe and vopt although it would change the meaning of kvpe.  And 

there were some tests that suggested the relationship was linear. 

 

An earlier version of the program (version 2) had a metric for activity variance not in the 

current version (version 3).  That metric was designed to relate gates that had a similar 

activity level so the Shannon expansion could be carried out on the most active gates 

only, in order to save power without too much cost in circuit area.  It was important to 

use activity variance, not just activity, as a metric in order to cluster gates with a similar 

activity level.  If activity level were the metric, the most active gates would be the most 

desirable to all partitions and the most active gates would be as likely to be split up 

among rivals as clustered together.  With that metric, there were three things to balance: 

vertices, hyperedges and activity variance.  But the goal of saving area was abandoned 

when saving power proved difficult enough. 

 

The design of a cost function for activity variance demonstrated the difficulty of working 

with cost functions across the hierarchy of coarsened hypergraphs.  Higher level vertices 

are simply weighted according to the number of lower level vertices they represent.  
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Higher level hyperedges have the weight of parallel lower level hyperedges and, more 

crudely, the lower level hyperedges that straddle partitions.  Activity variance was chosen 

in part because it could be accurately scaled up to high levels by summing statistics.  A 

more useful measure would have been correlated activity relating gates that change 

together, but no technique could be found to apply except at the level of individual gates. 

 

Annealing Algorithm 

The partitioning algorithm was improved with the inclusion of an annealing strategy.  

Prior to this improvement, a greedy algorithm was used, which was just the trivial 

strategy of choosing the alternative with the minimum cost.  Annealing is more 

sophisticated in order to avoid getting caught choosing the best among immediate 

alternatives but not the best of all alternatives, some of which are not immediately 

apparent. 

 

During the uncoarsening phase, the hypergraph is refined by selecting a vertex at random 

and determining the cost of moving it to each of the other partitions.  The goal is to select 

the best partition for the vertex, and then to do this repeatedly with a long series of 

vertices to produce the best overall partitioning.  But because only one vertex at a time is 

a candidate for movement, better alternatives that appear only after moving two or more 

vertices will not be found by a greedy algorithm.  Instead, that was replaced with an 

annealing strategy, which allows some temporary movement away from the goal in order 

to increase the likelihood of reaching the goal overall. 
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The refinement process still consists of a series of trials of selecting a vertex at random 

and evaluating the cost of moving it to each other partition.  The decision is whether to 

leave the vertex in its original partition or to move it to the best alternative partition, 

which was trivial with the greedy strategy.    Note that the annealing strategy 

implemented does not consider partitions other than the original and the lowest cost 

alternative.  The strategy could have been designed to chose a random partition as well as 

a random vertex and evaluate the cost; however, the likelihood of stumbling upon an 

improvement and the inefficiency of calculating the cost of moving to a single partition 

made this design alternative impractical. 

 

The annealing strategy requires only the cost of the original and alternative partitionings 

and the history of these.  The strategy's output is a Boolean flag which indicates whether 

to move the vertex to the new partition or not.  The strategy is named for the natural 

process by which crystals are formed, where the system as a whole dissipates heat and 

moves to a lower energy state although any particular part of the system may increase in 

energy level, especially temporarily.  The annealing strategy used in the program does 

not model the movement of energy between parts of the system, but it does model the 

likelihood that a part will enter a higher energy level and the overall tendency toward 

lower levels over time. 

 

The value of an annealing strategy is that it can overcome local cost minima in the graph 

of possible partitionings.  At any particular time, the current partitioning may be 

represented as a node on the graph, and each change of one vertex to one other partition 
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may be represented as an edge to an adjacent node.  If the cost associated with each 

adjacent node is higher than the current node, then any movement through the graph 

requires at least a temporary movement to a higher cost partitioning.  If the minimum 

configuration is represented by a node elsewhere on the graph, then it can only be 

reached via the higher cost partitioning.  The greedy strategy is the only one that lacks 

this capability, but the significance of the annealing strategy is that it tolerates the higher 

cost configurations by amounts and durations that resemble physical systems, which have 

been tested in the field.  Any non-trivial strategy might be made to work but the design 

was made to resemble annealing because it is know to be robust and efficient.  In 

particular, the cost functions were designed so that the ideal configuration representing 

no cost had a value of zero.  Of course, the minimal cost configuration is not known in 

the program except in trivial cases, but this zero cost models the zero energy state or 

absolute zero in temperature.  This allows for proper scaling in comparing non-optimal 

configurations. 

 

Another important property of the strategy implemented is that it does not require any 

adjustable parameters, except the number of iterations to run the refinement process.  The 

strategy scales the relative cost of the alternative partitioning relative to the current one.  

The result is independent of the absolute scale of the cost functions.  A negative result 

represents a lower energy state, which is always accepted, just like the greedy algorithm.  

But in annealing, a positive result is given further consideration.  These are assumed to 

form the positive half of a normal distribution.  The assumption is that the cost of 

successive partitionings resembles a signal with proportional noise.  The signal reduces 
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over time and the noise does as well.  Scaling the relative alternative cost to the current 

cost leaves only the noise, which is assumed normally distributed, at least on the positive 

side.  So a data point, x, depends on the cost of the current partitioning, cost, and the cost 

of the alternative, newcost: 

cost
costnewcostx −

=  

 

The values at this point have a mean of zero, but some measurement of the variability is 

needed so the strategy can avoid selecting very high cost configurations.  So the variance 

of these values is computed; however, this would give the more weight to the earlier 

values and maintain too long of a history.  Instead, a weighted average of the squared 

values is used as the variance, so that the weight of older values decays exponentially.  

The choice of the weighting factor determines how long older values have significance.  

The reciprocal of this weighting factor is the number of iterations before the significance 

of a value has diminished to 37% of its original amount.  That was selected to be the 

square root of the number of iterations for the entire refinement process.  Therefore, 

refinement is as many iterations of the 37% diminishment cycle, as there are trials in each 

diminishment cycle.  So the variance, var, depends on the weighting factor, delta, the 

data point, x, and the previous value of the variance, oldvar.  And delta depends on the 

number of iterations, ntries: 

( ) oldvaroldvarxdeltavar
ntries

delta

+−=

=

2

1
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The values are scaled by the square root of the variance, producing a z-score: 

var
xzscore =  

 

The probability density function for a normal distribution is used to relate the z-score 

with the probability that the higher cost alternative will be accepted.  The essence of the 

annealing strategy is that there should be an exponential function of the cost that 

produces two extremes, each with an infinitesimally small probability of occurring: one 

in which an infinity bad alternative is accepted and one in which any higher cost 

alternative is rejected.  Clearly, the first case corresponds to an exponential approaching 

zero at infinity and the second, one at zero.  There is one degree of freedom left in such 

an exponential, which appears as the reciprocal of the Boltzmann constant in the physical 

equation.  This is the coefficient of the argument to the exponential and determines the 

steepness of the exponential function.  By specifying the value of the coefficient, the 

probability of the decision is determined. 

 

The simplest way to express this function is as the desired probability raised to a power, 

so that when the power is one, the result is the desired probability.  This function will 

give zero when the power is infinity, and one when the power is zero.  The alternative 

partitioning should be selected when a random number is less than this result.  The power 

must be a coefficient multiplied by the z-score so that the power is one when the z-score 

corresponds to the desired probability.  Therefore, the z-score of the alternative 

partitioning is scaled by the z-score of the desired probability, which is the inverse 

probability density function for a normal distribution of the desired probability. 
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The inverse probability density function for a normal distribution, sometimes called the 

probit function, can be difficult to compute.  In fact, it has no closed form.  But near the 

center of the distribution, it is a relatively straight line.  For the annealing strategy, the 

probability of selecting a higher cost alternative partitioning was chosen to be 0.5 initially 

and reduce linearly with the number of iterations to zero probability at the end.  Since the 

higher cost alternatives form only the positive half of a normal distribution, these 

probabilities correspond to 0.75 to 0.5 on a complete bell curve and z-scores of 0.6745 to 

zero.  In this region, the normal distribution is almost flat.  At zero, the value is 

3989.021 ≈π and at 0.6745, the value is about 0.3178.  The inverse cumulative 

function, probit, can be approximated by a straight line with slope 5.22 ≈π  so that at 

0.5, the error is zero and at 0.75, the error is 7%.  Using a distribution that is only the 

positive half of a normal distribution, this constant becomes 1.25. 

 

So the wanted probability, prob, depends on the total number of iterations, ntries, and the 

current iteration number, n.  The value of the probit function, probit, depends on prob: 

 

probprobit
tries

ntriesprob

⋅=

⎟
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The decision to accept the alternative partitioning is made by the following expression.  

The alternative is accepted when the expression is true.  The right-hand side gives the 
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probability that the partitioning with the z-score should be accepted given the average 

probability, prob, and its probit function value, probit.  The left-hand side of the 

expression is a random number, r, between zero and one: 

probit
zscore

probr <  

 

In addition to the annealing strategy, an alternative partitioning is also accepted when its 

cost is less than that of the current configuration.  Since the annealing strategy allows 

inferior partitionings to be pursued, the partitioning at the end of the uncoarsening 

algorithm may not be the lowest cost configuration during the whole process.  So the 

algorithm keeps track of the lowest cost and the partitioning to go with it, which is what 

is returned by the algorithm. 

 

PMOS Supply Gating 

The Shannon expansion technique saves power by switching off one set of gates or 

another with an NMOS supply-gating transistor.  The outputs of these sets of gates, the 

cofactors, are combined in a multiplexer.  But if one or the other of the cofactor outputs 

were completely disabled, then the multiplexer itself could be eliminated and the outputs 

of the cofactors tied together as the final output signal for the Shannonized circuit. 

 

To switch off a cofactor completely requires PMOS supply-gating as well as the usual 

NMOS supply-gating transistor.  NMOS gating prevents a logical "0" signal from being 

output when switched off while PMOS prevents a "1" from being passed.  PMOS gating 

is required only on the final level gates, not the entire cofactor, because the goal is only to 
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disable the final output, not to switch off the gates to save power as with the NMOS 

gating transistor.  A gate with PMOS and NMOS supply gating resembles a tri-state 

buffer where the inputs to the supply gating transistors are the inverted and non-inverted 

signals that enable the output.  If the original last level gates of both cofactors were 

simple inverters, then with the supply gating and the outputs tied together, these buffers 

would look a lot like a static CMOS inverting multiplexer.  That makes sense, since the 

goal is to obviate the multiplexer in the design without PMOS gating.  So the purpose of 

adding PMOS gating to the last level gates is to take advantage of the existing NMOS 

gating and complete the formation of the multiplexer there, so no discrete multiplexer is 

required. 

 

The technique of using PMOS gating to avoid discrete multiplexers only works if each 

final level gate has its own independent PMOS and NMOS supply gating transistors.  

Shannonized circuits with multiple outputs cannot share gating transistors lest these form 

unexpected electrical paths between the multiplexers.  The consequences of sharing 

gating transistors are evident in a circuit consisting of two static CMOS inverting 

multiplexers with selector signal transistors tied together.  The circuit is equivalent to a 

Shannonized circuit with final level gates that are inverters and shared PMOS and NMOS 

gating transistors.  The following schematic shows the result with NMOS gating only.  

Gates that are off are marked with an "X": 
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Figure 8: PMOS Gating Circuit 

 

The flaw in the design is that when a supply-gating transistor is turned off it provides a 

floating node that connects the two multiplexers together (between M4 and M5).  For 

some input vectors, the resulting circuit is a short through six transistors to ground.  The 

output signals are connected through transistors so the signals are weakened and a high 

output has a lower voltage than it should and a low output has a higher voltage than it 

should. 

 

The solution to this problem is to use separate supply gating transistors. 
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Test Output Files 

The output of the program is a SPICE netlist that includes a table of circuit area 

measurements.  The file is input to a version of SPICE to measure power.  Both the area 

and power information is provided for the original and modified versions of the circuit so 

they can be compared and tested. 

 

Each version of the circuit is given in a subcircuit definition that consists of a list of 

subcircuit calls to library gates.  The circuits and library gates are defined with explicit 

power supply nodes to facilitate the supply gating and to ensure independent 

measurement of power for original and modified circuits.  In the main body of the netlist, 

each version of the circuit is called.  The circuits share the same set of input signals, but 

each has its own separate output signals and power supplies.  Each output signal is loaded 

with a fan-out-of-four inverters library subcircuit.  The only other things in the SPICE 

netlist are include file references, one for each input signal and one overall header file.  

This organization allows the circuit descriptions to be stored separately from the input 

vectors and to include only as many input vectors as are needed.  The separate input 

vector files and header file free the circuit description file of any cycle time information 

or any peculiar syntax that might cause portability problems.  The output of the program 

works with both Linear Technology's LTSPICE and Synopsys's HSPICE but slightly 

different header files were needed because of syntactical differences. 
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The main header file contains the actual power supply voltage sources, directives to 

record the power required from each, and the directive for temperature and to run the 

transient analysis.  The main header also has include file references to the transistor 

models file and the gate library file.  The input signal files were generated with a small 

utility program that created SPICE PWL (arbitrary piece-wise linear) voltage sources for 

random input vectors with certain specifications. 

 

Test Conditions 

The following conditions were used as the baseline conditions for power tests: 

• Predictive 32 nm transistor technology 

• 0.9 V power supply 

• Fan-out-of-four inverter loads on each output 

• 5 ns cycle times (200 MHz clock frequency) 

• 1000 cycles per test 

• 20% input activity level 

• 20 ps rise and fall times 

• 110° C 

• Two levels of Shannonization recursion 

• Limits of 50% increase in area and estimated power (powered area) per partition 

 

In addition, for certain tests, the 32 nm model was compared with 45 and 65 nm 

technologies using a 1.0 V supply and the 5 ns clock was compared with 2 ns, 10 ns and 

1 µs clocks.  The largest benchmark, c6288, was run with only 100 cycles. 
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The program output was designed to work with any convenient version of SPICE, but the 

tests for this experiment were carried out using LTSPICE from Linear Technologies.  For 

several 10% length runs with five benchmark circuits, the results from LTSPICE were 

compared with those of HSPICE, from Synopsys, and the two were found to agree within 

1%. 

 

Test Circuits 

Tests were carried out on ten ISCAS-85 benchmarks and two other benchmark ALUs: 

Name Gates Description Vopt 

c432 184 27 channel interrupt controller 11

alu2 277 2-bit ALU (not ISCAS-85) 91

c880 451 8-bit ALU 15

c1908 466 Error Correcting Circuit 10

c499 534 Single-Error Correcting circuit with XORs 6

c1355 594 Single-Error Correcting circuit with NANDs 7

c2670 776 ALU with comparator, equality checker, parity trees 30

alu4 816 4-bit ALU (not ISCAS-85) 100

c3540 1134 8-bit ALU with BCD arithmetic, logical shift 100

c5315 1743 9-bit ALU with addition, logic, parity 16

c7552 2126 32-bit adder, magnitude comparator, parity 22

c6288 2848 Multiplier, 240 full- and half-adders 5

Table 1: Descriptions of Benchmark Circuits 
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The vopt column included in the table above gives the optimal number of vertices (gates) 

per partition, which were found experimentally to produce the greatest power savings in 

the Shannonized version of the circuit under baseline conditions. 

 

Larger circuits, alu4, c3540, c5315 c7552 and c6288, were not given the normal initial 

technology mapping by the program because of limitations of the SIS logic synthesis 

program, so these test results compare original circuits that were technology mapped by 

other means compared with modified, partitioned circuits technology mapped by SIS. 

 

A number of benchmark circuits include a few inherent partitions.  Each has several 

disjoint sets of signals and gates.  There is nothing to be gained by merging these 

partitions for Shannonization, and the program cannot be arranged to do so.  The 

minimum number of partitions for c2670 is 81; c5315 is 6; c7552 is 5 and c880 is 3. 

 

Test Procedure 

Tests were conducted to measure the power, area and delay of logic circuits synthesized 

by the program in order to determine its performance.  Power was measured using 

LTSPICE.  Area results were reported directly by the program.  Delay was measured 

using the Design Compiler from Synopsys.  In its default operating mode, the program 

outputs the circuit in SPICE format, but with an alternate output mode, it produced 

Verilog format, for compatibility with the Design Compiler.  This allowed for delay 

results to be produced independent of power results.  There is also a separate program, a 
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UNIX awk script, to derive Verilog from the SPICE output, so as to avoid resynthesizing 

the circuit from scratch and ensuring the circuits were equivalent.  The Design compiler 

was also used to test that the modified circuits contained no dependency loops. 

 

In every case the original and modified circuits were tested side-by-side and the percent 

change was reported according to the following formula: 

%100% mod ⋅
−

=Δ
org

org

x
xx

x  

Since the desired outcome is less power, smaller area and shorter delays, improvements 

are reported as negative numbers. 

 

To ensure the modified circuits produced logic results equivalent to those of the original 

circuit, all the outputs of the five smallest benchmarks were checked for logical 

correctness for hundreds of input vectors, using SPICE. 

 

For power tests, the program generated SPICE output with reference to an input signal 

include file for each input signal.  Of course, both the original and modified circuits used 

the same inputs.  The input signal files were SPICE PWL (piecewise linear source) 

voltage sources generated randomly by a separate utility program.  The voltage, cycle 

time and rise and fall times were parameterized in these signal files.  Each output signal 

was tied to a fan-out-of-four inverters library subcircuit.  Of course, original and 

modified circuit outputs did not share outputs.  The gates were referenced in the 

generated SPICE output as subcircuits, defined in a separate gate library file. 
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The program’s SPICE output referred to a general header include file, which 

encapsulated parameters and measurements commands whose syntax tend to vary among 

SPICE versions.  The header file for baseline conditions follows: 

* 32 nm, 5 ns header 
 
.param T=5N 
.param L=32N 
.include "32nm_bulk2005.sp" 
 
.include "gatelib.sp" 
 
.param TR=20P 
.param V=0.9 
 
VDDorg VDDorg 0 dc 'V' 
VSSorg VSSorg 0 dc  0 
 
VDDmod VDDmod 0 dc 'V' 
VSSmod VSSmod 0 dc  0 
 
*LTSPICE 
.tran '1001*T' uic 
.measure tran avgpowerorg avg abs(V(VDDorg)*I(VDDorg)) 

trig time val='T' 
.measure tran avgpowermod avg abs(V(VDDmod)*I(VDDmod)) 

trig time val='T' 
.options temp=110 

 

For delay tests, Verilog language output of original and modified circuits was analyzed 

by the Design Compiler and the results extracted via the following script: 

for a in $*; do 
for suffix in .sp .org.v .mod.v; do 
a=`basename $a $suffix` 
done 
orgcmd="read -f verilog $a.org.v; report_timing" 
modcmd="read -f verilog $a.mod.v; report_timing" 
cmd=$orgcmd 
for i in org mod; do 
orgval=$val 
val=`echo $cmd | dc_shell | \ 

nawk '/data arrival time/{print $4}'` 
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cmd=$modcmd 
done 
modval=$val 
echo $a $orgval $modval | tr ' ' '\t' 
done 
 

This method of measuring delay does not account for the delay due to Shannonization, in 

which the switching of cofactors due to the control variable adds a significant extra delay 

of about 25%. 

 

The gate library included inverter, NAND, NOR, AND and OR two-input gates.  In order 

to simplify the analysis using SIS, the library also included gates with each input 

inverted.  AAND and AOR had the A input inverted.  BAND and BOR had B inverted. 

 

Selection of Tunable Parameters 

Over the course of the development of the program, tests were conducted to determine 

the performance of the program, in terms of its ability to operate correctly, synthesize 

Shannonized logic that was equivalent to the original circuit and to minimize power 

consumption.  Because of the development of these algorithms many new parameters 

were introduced, though of course every attempt was made to avoid them by deriving 

them from formulas based on general principles and existing parameters. 

 

The remaining, tunable parameters may be changed by user of the program on the 

command line or from environment variables.  The default values for these were the best 

values found experimentally during the development of the program.  The performance 

of the program is not particularly sensitive to most of these parameters either in terms of 
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a change in the parameter value or the type of benchmark circuit under test, with the 

exception of the parameters related to partitioning, vopt and seed.  The vopt parameter is 

the optimal number of vertices (or gates) per partition and seemed to vary significantly 

with the type of circuit.  The seed parameter is the random number seed for partitioning 

and changes the particular partitioning.  The program tries to group gates neatly with the 

fewest signals between groups, but there is a significant amount of variability in how this 

translates into a Shannonized circuit that requires minimum power. 

 

Since there was no clear best single number for each of these two parameters, they were 

adjusted in preliminary 10% length runs of the program before the final tests were 

performed.  Firstly, a series of vopt values were tried on the benchmark circuits under 

baseline conditions.  The vopt values tried were all seven values from four to ten, 

inclusive, and 24 values in the decade up to 100, in the exponential series used for 

resistor values.  For each benchmark, the power and delay results were plotted log-

linearly and a second order curve fit was used to find the vopt that gave the minimum 

power requirement, while allowing for the variability between runs due to the random 

number seed.  From these plots, optimal vopt values were selected by the advisor.  For 

each benchmark, the optimal vopt was used for most of the final tests.  There was also a 

series of final tests in which a series of vopt values were tried. 

 

After the full complement of vopt values for each benchmark was determined, there was 

still a need to consider the variability in performance due to “random” effects.  The 

partitioning algorithm uses random numbers because of a Monte Carlo aspect in selecting 

 - 48 -  



vertices of the hypergraph to consider moving to other partitions.  The random number 

seed variable has no meaning except that differ values give different partitionings, which 

are of equivalent effectiveness, according to the partitioning algorithm.  But the 

partitioning cost function is not the same as the power saving measurement of the final 

circuit, which appears as a random variation when the program is run with different seed 

values. 

 

Since the goal of program is to produce any synthesis of the logic that saves power, it is 

legitimate to run the program repeatedly with several random numbers and select the 

version that is best.  That procedure is limited by the time required to carry it out.  So to 

take reasonable advantage of the variability in seed, five values were chosen at random 

for five runs for each vopt value, for each benchmark.  Because both seed and vopt are 

important in partitioning, any selection of seed is dependent on the value of vopt; 

however, Shannonization and its parameters are theoretically independent of partitioning 

and its parameters, so there is no need to evaluate a selected seed with more than one set 

of Shannonization parameters. 

 

For the final test results, an optimal vopt was found for each benchmark and a seed was 

selected for minimum power for each vopt for each benchmark. 

 

Test Results 

The following tables summarize the results of tests of the performance of the program in 

using the Shannonization technique to synthesize logic with lower power without undue 
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increase in area or delay.  The tables are organized with a row for each benchmark circuit 

and columns arranged primarily for power, area and delay and secondarily for a 

parameter that is the subject of comparison.   Except for the last table, all table entries are 

percent change from original to modified circuit relative to the original, so decreases in 

power, area and delay are expressed in the table as negative numbers. 

 

 Power Area Delay 

vopt 10 25 50 100 10 25 50 100 10 25 50 100 

c432 -16% -11% -5% 0% 2% 8% 28% 0% -12% -2% -4% 0% 

alu2 -9% -13% -5% -14% 11% 13% 19% 21% -9% 1% 9% -20% 

c880 -20% -20% -18% -18% -2% -1% 7% 2% -19% -14% -9% -9% 

c1908 -26% -10% -10% -8% -16% 1% 2% 10% -3% -4% 7% -8% 

c499 -20% -12% -7% -4% -21% -5% -3% 5% 3% 8% 4% 3% 

c1355 -21% -9% -1% -2% -21% -3% 6% 20% 4% 10% 15% 14% 

c2670 -11% -15% -7% -11% -8% -7% -2% -4% -7% -4% -7% -11% 

alu4 -2% -2% 3% 4% 6% 7% 12% 18% 20% 37% 25% 9% 

c3540 -1% -2% -1% -3% 1% 2% 7% 14% 14% 12% 14% -1% 

c5315 -6% -2% -3% -3% -4% 0% 3% 5% -5% 2% 3% -11% 

c7552 -8% -4% -4% -7% -3% 6% 13% 5% 18% 31% 31% -7% 

c6288 -28% -7% 0% -2% 6% 15% 15% 12% 46% 96% 27% 13% 

Table 2: Comparison of Partition Sizes 

 

The table above shows the effects of varying vopt, the optimal number of vertices (gates) 

per partition, for the partitioning algorithm.  The baseline conditions were used for these 

tests but with no Shannonization recursion.  Most circuits benefit from a small vopt, 25 or 

less.  ALUs tend to use the least power with large partitions. 
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 Power Area Delay 

c432 -20% 5% 2% 

alu2 -14% 22% -21% 

c880 -22% -2% -10% 

c1908 -26% -16% -3% 

c499 -20% -24% 10% 

c1355 -21% -23% 8% 

c2670 -15% -5% -12% 

alu4 4% 18% 9% 

c3540 -3% 14% -1% 

c5315 -5% -5% -5% 

c7552 -5% 5% 10% 

c6288 -42% -16% -11% 

Table 3: Optimal Partition Sizes 

 

The table above gives results for the optimal number of vertices (gates) per partition, 

selected for each benchmark circuit.  Again, the baseline conditions were used except that 

no Shannonization recursion was used.  Power savings are significant, varying from 20% 

to 30% for many circuits.  The cost in area was usually negative—the modified circuit 

actually used less area—but some circuits required up to 10% more area.  The delay time 

varied from a 21% decrease to a 10% increase. 
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 Power Area Delay 

c432 -19% 7% -3% 

alu2 -12% 31% -22% 

c880 -24% -2% -14% 

c1908 -28% -24% -9% 

c499 -27% -35% -4% 

c1355 -27% -36% -1% 

c2670 -17% -12% -19% 

alu4 5% 27% 15% 

c3540 -4% 20% 11% 

c5315 -5% -6% -14% 

c7552 -8% 3% 3% 

c6288 -40% -15% -9% 

Table 4: Recursive Shannonization 

 

The table above gives results for two level recursive Shannonization.  The baseline 

conditions were used for these tests.  The power results were a bit better for the error 

correcting circuits and just a few percent better for most other circuits.  Except for alu4, 

which actually required more power, the other circuits improved from 4% to 40%.  

Overall, the power savings median was an 18% improvement. 
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 Power Area Delay 

c432 -17% 10% 0% 

alu2 -12% 31% -22% 

c880 -23% -1% -14% 

c1908 -28% -23% -9% 

c499 -27% -35% -4% 

c1355 -27% -36% -1% 

c2670 -12% -10% -18% 

alu4 5% 27% 15% 

c3540 -4% 20% 11% 

c5315 -8% -5% -11% 

c7552 -6% 8% 34% 

c6288 -40% -14% -10% 

Table 5: Relaxed Area Constraint 

 

The table above gives results with the area of the modified circuit limited to a 70% 

increase for each partition instead of 50%, and using baseline conditions otherwise.  This 

constraint relaxation had little effect and in fact most circuits synthesized no differently 

because of it.  Shannonization on a partition is aborted if the area or estimated power 

constraint is exceeded.  Estimated power is calculated as area for shared logic and 

multiplexers but half of area for gates in the cofactors, which are estimated to be disabled 

half of the time.  Since this table allows area increases of as much as 70% but leaves 

power increases limited to 50%, in almost all cases the Shannonization decision is 

determined by the power constraint so the circuit is synthesized the same as with a 50% 

area constraint.  Only in rare instances is the circuit synthesized differently with the 

relaxed constraint. 
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 Power Area Delay 

len (nm) 32 45 65 32 45 65 32 45 65 

c432 -19% -11% -4% 7% 7% 7% -3% -3% -3% 

alu2 -12% -2% 5% 31% 31% 31% -22% -22% -22% 

c880 -24% -19% -15% -2% -2% -2% -14% -14% -14% 

c1908 -28% -21% -18% -24% -24% -24% -9% -9% -9% 

c499 -27% -20% -17% -35% -35% -35% -4% -4% -4% 

c1355 -27% -22% -19% -36% -36% -36% -1% -1% -1% 

c2670 -17% -14% -9% -12% -12% -12% -19% -19% -19% 

alu4 5% 9% 13% 27% 27% 27% 15% 15% 15% 

c3540 -4% 3% 7% 20% 20% 20% 11% 11% 11% 

c5315 -5% -3% -1% -6% -6% -6% -14% -14% -14% 

c7552 -8% -3% -1% 3% 3% 3% 3% 3% 3% 

c6288 -40% -43% -43% -15% -15% -15% -9% -9% -9% 

Table 6: Comparison of Technology Scales 

 

The table above shows the effects of technology scales.  The tests were conducted using 

baseline conditions and the 32 nm predictive technology model from 2005 and 45 and 65 

nm models generated by the Nano-CMOS program using default parameters except 

Vth = 0.16V and Vdd = 1.0V.  These results show that the Shannonization technique 

becomes more important as technology scales down.  This occurs because leakage power 

becomes the greatest form of power consumption below 45 nm, greater than dynamic 

power.  Area does not change significantly due to Shannonization with technology scale 

and in this experiment, did not change at all.  Delay did not change because this 

experiment did not account for technology scale. 
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 Power Area Delay 

cycle (ns) 2 5 10 1000   

c432 -9% -19% -24% -31% 7% -3% 

alu2 -3% -12% -17% -23% 31% -22% 

c880 -19% -24% -26% -30% -2% -14% 

c1908 -22% -28% -31% -37% -24% -9% 

c499 -20% -27% -30% -36% -35% -4% 

c1355 -22% -27% -30% -34% -36% -1% 

c2670 -9% -17% -20% -23% -12% -19% 

alu4 11% 5% 3% 0% 27% 15% 

c3540 2% -4% -8% -14% 20% 11% 

c5315 -5% -5% -11% -15% -6% -14% 

c7552 -4% -8% -10% -14% 3% 3% 

c6288 -44% -40% -37% -26% -15% -9% 

Table 7: Comparison of Cycle Times 

 

The table above compares power consumption by cycle time.  The tests were conducted 

with baseline conditions except for cycle time.  The baseline cycle time is 5 ns, which is 

included in this table.  For most circuits, power savings due to Shannonization increase 

with cycle time because the technique saves leakage power and not dynamic power.  For 

the minimum cycle time, Shannonization is not effective because it introduces additional 

switching elements.  The table above includes results for 1000 ns = 1 µs cycle time, 

which approximates static power consumption. 

 

Area and delay are not functions of cycle time. 
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 Execution 

Time (s) 

c432 220.77 

alu2 49.67 

c880 38.78 

c1908 50.11 

c499 44.95 

c1355 46.88 

c2670 129.52 

alu4 557.75 

c3540 231.74 

c5315 335.37 

c7552 434.62 

c6288 613.46 

Table 8: Execution Times 

 

The table above gives execution time of the Shannonization program, including time to 

run the SIS logic synthesis program.  These runs were carried out using a GNU C++ 

compiled program run on a Red Hat Linux system with a 1.4 GHz AMD Athlon 

processor.  Execution time varied from 39 seconds to 10 minutes.  Total memory required 

for both programs simultaneously was about 10 MByte for the largest benchmark. 

 

Future Work 

Future work includes Shannon-aware partitioning, in which aspects of Shannon 

decomposition influence partitioning.  At minimum, this might include combining 

partitions that use the same control variable.  More generally, this might be a separate 
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stage of moving gates near partition boundaries, selecting control variables and 

evaluating the control variable selection criterion (fewest number of gates in the result). 

 

A simple model of power consumption in switching circuits with supply gating 

transistors would make it possible to compare alternative syntheses and search for the 

best while the program is running, instead of waiting for a separate and slow SPICE 

simulation. 

 

This program means to automate the Shannonizing logic synthesis process, but there 

needs to be a thorough analysis of small circuits to evaluate the program’s ability to 

select the best partitioning and Shannonization. 

 

This program operates on logic at the gate level.  Better results might be possible by 

applying Shannonization of a digital design at the RTL level as well. 

 

Conclusion 

With good partitioning, selection of a control variable and extraction of shared logic, it is 

possible to significantly reduce power consumption in combinatorial logic, with a 18% 

median improvement with ISCAS-85 benchmarks at the 32 nm level.  Techniques such as 

these will only become more important as leakage power becomes an ever greater share 

of power consumption, as transistor technology scales down.  This program demonstrates 

that Shannon expansion power analysis can be an integral and valuable part of logic 

synthesis software. 
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